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A new transversely-isotropic elastic–plastic constitutive model for unidirectional fiber
reinforced polymers (FRP) is presented. The model is able to represent the fully nonlinear
mechanical behavior under multi-axial loading conditions and under triaxial stress states
prior to the onset of cracking. Since associated flow rules often give a wrong prediction of
plastic Poisson coefficients, a non-associated flow rule is introduced to provide realistic
predictions of the volumetric plastic strains. This paper focusses on the simulation of triax-
iality dependent plasticity based nonlinearities of FRP until failure occurs. The onset and
propagation of failure is predicted by a new smeared crack model presented in an accom-
panying paper (Camanho et al., 2012). In order to demonstrate the capabilities of the new
material model, a yield surface parameter identification for IM7-8552 carbon epoxy is pre-
sented and simulations of quasi-static transverse and off-axis compression tests and of uni-
axial compression tests superimposed with various values of hydrostatic pressure are
shown as a model verification.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The effective use of polymer composite materials rein-
forced by unidirectional fibers in aerospace and automo-
tive structures relies on the ability to predict the ultimate
load and residual strength of these structures. However,
accurate failure predictions are only possible if the stress
states for general loading conditions, boundary conditions
and load histories are properly defined. Therefore, an accu-
rate representation of the constitutive response of the
composite material under multiaxial loading conditions,
including high hydrostatic pressures, is required (Rolfes
et al., 2008; Vogler et al., 2010). The pre-failure nonlinear-
ities due to yielding of the epoxy resin lead to a redistribu-
tion of stresses in a laminate and affect the onset of the ply
failure mechanisms (matrix cracking, fiber–matrix pull-
out, fiber failure). For example, Chang and Chang (1987)
demonstrated that the simulation of shear non-linearities
is required to accurately predict the failure of composite
bolted joints manufactured using cross-ply laminates.
However, also other nonlinearities must be taken into ac-
count (Pinho et al., 2006; Maimi et al., 2011). Especially
the pronounced nonlinearities under uniaxial and biaxial
compression transverse to the fibers, and under high
hydrostatic pressures has to be regarded. In the presence
of high pressures the glass transition temperature of the
epoxy resin drops from above 80� to operating tempera-
ture, which results in a change of the mechanical proper-
ties of the lamina (Pae and Rhee, 1995); the elastic
parameters are reduced and the epoxy resin exhibits pro-
nounced yielding under high pressure (Mi and Zheng,
1998; Dupaix and Boyce, 2007). Constitutive models,
which are able to capture all these non-linearities under
multiaxial loading conditions and triaxial stress states does
not exist. Furthermore, most of the available models are
only valid for the plane stress state (Sun and Chen,
1989). However, general models that simulate plastic
deformation and fracture of polymer composites under
fully three-dimensional stress states are required.
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Based on the previous observations, the objective of this
paper is to present a fully three-dimensional transversely-
isotropic elastic–plastic constitutive model for composite
materials, which is able to regard all the plasticity based
non-linearities under multiaxial loading conditions. The
plasticity model proposed here is used in combination
with a smeared crack model, presented in an accompany-
ing paper (Camanho et al., 2012), that is able to simulate
the onset and propagation of ply failure mechanisms. The
plasticity model provides the stress and strain tensors that
are used in appropriate failure criteria that distinguish ma-
trix-dominated and fiber-dominated failure mechanisms
and that predict the fracture angle; all this information is
required for the smeared crack model.

2. Transversely isotropic elastic–plastic constitutive
model

The material model proposed in this series of two pa-
pers consists of an elastic–plastic constitutive model and
a smeared crack model. For the overall model, an additive
split of the strain tensor into elastic strains ee, plastic
strains ep and cracking strains ec is assumed:

e ¼ ee þ ep þ ec: ð1Þ

The material behavior prior to the onset of cracking is gov-
erned by the elastic–plastic stress–strain relations, ad-
dressed in this paper. The onset and propagation of
failure following a traction separation approach for the
cracking strains ec is governed by the smeared crack model,
presented in Camanho et al. (2012). A scheme of the com-
bined plasticity and smeared crack model is shown in
Fig. 1. To establish the constitutive equations for the trans-
versely elastic–plastic material model, the mathematical
framework of invariant theory is used. This mathematical
concept enables the representation of anisotropic constitu-
tive functions as isotropic tensor functions. An in-deep
description of the invariant theory is given in Boehler
(1987) and Spencer (1987). A detailed description of the
invariant theory with respect to the construction of aniso-
tropic yield functions and anisotropic constitutive equa-
tions in general is given in Schröder (1995).

Transversely isotropic materials are characterized by a
preferred direction a, which is the fiber direction for unidi-
rectional fiber composites. Thus, the material response is
invariant with respect to arbitrary rotations around this
preferred direction a, to reflections at fiber parallel planes,
and with respect to the reflection at that plane, whose
Fig. 1. Schematic representation of uniaxial stress–strain response.
normal is a. These are the group of symmetry transforma-
tions for transverse isotropy. The structural tensor A of
transverse isotropy, which represents the material’s intrin-
sic characteristic direction, is defined as the dyadic product
of the preferred direction a:

A ¼ a� a: ð2Þ

The structural tensor A is used as an additional tensor
argument to formulate the elastic free energy density,
the yield function and the plastic potential as isotropic ten-
sor functions.

2.1. Elastic stress strain relations

A linear elastic constitutive law is chosen to describe
the elastic stress strain relations. The elastic free energy
density for a transversely-isotropic material with the ten-
sorial arguments e and A reads:

Ŵðe;AÞ : ¼ 1
2

kð treÞ2 þ lT tr ðeÞ2 þ aðaeaÞ tre

þ 2ðlL � lTÞðae2aÞ þ 1
2

bðaeaÞ2; ð3Þ

with the five elasticity constants k; a; lL, lT and b as
invariant coefficients. The stresses are obtained by the first
derivative of the elastic free energy density with respect to
the strains:

r ¼ @eŴðe;AÞ ¼ kð treÞ1þ 2lTeþ aðaea1þ treAÞ
þ 2ðlL � lTÞðAeþ eAÞ þ b aeað ÞA ð4Þ

and the elasticity tensor is given by the second derivative
of the elastic free energy density with respect to the strain
tensor:

Ce ¼ @2
eeŴðe;AÞ ¼ k1� 1þ 2lTIþ aðA� 1þ 1� AÞ

þ 2ðlL � lTÞIA þ bA� A; ð5Þ

with

IA ¼ AimIjmkl þ AjmImikl: ð6Þ

In matrix notation, the 4th order elasticity tensor of a
transversely-isotropic material for the preferred X1-direc-
tion in a Cartesian coordinate system, i.e. a ¼ ½1; 0;0�T ,
reads:

Ce ¼

kþ 2aþ bþ 4lL � 2lT kþ a kþ a 0 0 0
kþ a kþ 2lT k 0 0 0
kþ a k kþ 2lT 0 0 0

0 0 0 lL 0 0
0 0 0 0 lL 0
0 0 0 0 0 lT

2
666666664

3
777777775
:

ð7Þ

A conversion from invariant coefficients to engineering
coefficients and vice versa is given in Table 3, see
Appendix.

2.2. Yield function and definition of invariants

The structural tensor A and the stress tensor r are the
argument tensors, whose isotropic invariants form the
functional basis for constructing the yield function f as a
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scalar isotropic tensor function. Since an isotropic
hardening rule is applied, the equivalent plastic strain �ep de-
fined in Eq. (22) is needed as an additional argument of the
yield function. The general form of the yield function reads

f ¼ f ðr; �ep;AÞ 6 0: ð8Þ

The functional basis for transverse isotropy formed by the
argument tensors A and r reads

tr ½r�; tr ½r2�; tr ½r3�; tr ½Ar� and tr ½Ar2�: ð9Þ

In accordance with the invariant theory, an arbitrary linear
combination of the stress tensorr can be used in Eq. (9). Fur-
thermore, a linear combination of the basic invariants given
in (9) can be used without loss of generality. Hereafter, the
quadratic invariants tr ½r2� and tr ½Ar2� and the linear invari-
ant tr ½r� of the functional basis (9) are reformulated in order
to identify certain stress states with the corresponding
invariants. The basic invariants tr ½Ar� and tr ½r3� are ne-
glected. The invariant tr ½Ar� can be used to regard yielding
in fiber direction, as it occurs in short fiber reinforced ther-
moplastics, the cubic invariant tr ½r3� is suitable for model-
ing metal plasticity. For reformulating the quadratic
invariants of the functional basis (9), i.e. tr ½r2� and tr ½Ar2�,
a decomposition of the stress tensor r in plasticity inducing
stresses rpind and reaction stresses rreac is assumed (Spen-
cer, 1972; Rogers, 1987; Schröder, 1995):

r ¼ rpind þ rreac; ð10Þ

with the stress components rreac and rpind :

rreac ¼ 1
2
ðtrr� araÞ1� 1

2
ðtrr� 3araÞA;

rpind ¼ r� 1
2
ðtrr� araÞ1þ 1

2
ðtrr� 3araÞA:

ð11Þ

The stress tensor rreac is called the reaction stress tensor, be-
cause it contains the hydrostatic pressure and the projection
of the stress tensor onto the preferred direction a. The
hydrostatic pressure and the stresses in fiber direction are
at first assumed to result in elastic reactions. Reformulation
of the quadratic invariants using rpind gives the invariants I1

and I2, see Eq. (12). The choice of the plasticity inducing
stresses rpind instead of r for reformulating the quadratic
invariants of the functional basis enables to identify trans-
verse shear loading solely with the invariant I1 and in-plane
shear loading solely with the invariant I2. Hence, a complete
decoupling of the stress states with respect to their repre-
sentation by invariants is achieved. This significantly sim-
plifies the parameter identification. In order to account for
pressure dependent yielding, the linear invariant tr ½r� of
the functional basis (9) is reformulated, which gives the
third invariant I3 in Eq. (12). The set of transversely isotropic
invariants used to formulate the yield surface reads:

I1 :¼ 1
2

tr rpind� �2 � a rpind� �2
a;

I2 :¼ a rpind� �2
a;

I3 :¼ trr� ara:

ð12Þ

Having defined the set of invariants (12), the transversely
isotropic yield surface formulation for unidirectional fiber
matrix composites is introduced:
f ðr; �ep;AÞ ¼ a1 I1 þ a2 I2 þ a3I3 þ a32I2
3 � 1 6 0; ð13Þ

with

a3 ¼ at
3; a32 ¼ at

32 if I3 > 0 and
a3 ¼ ac

3; a32 ¼ ac
32 if I3 6 0:

ð14Þ

As an extension of the yield surface presented in Vogler
et al. (2010), the case differentiation concerning I3 into
I3 > 0 and I3 < 0 allows additionally to control yielding in
biaxial stress states. Especially the consideration of the
biaxial compression hardening behavior is crucial for mod-
eling the response of carbon epoxy under high hydrostatic
pressures. The proposed yield function results in six yield
surface parameters that have to be determined. Each one
of these parameters and the corresponding invariants are
related to certain loading states: transverse shear, in-plane
shear, uniaxial and biaxial tension and uniaxial and biaxial
compression. For each of these loading states, a hardening
curve can be prescribed, giving yield stress vs. correspond-
ing plastic strain. The implemented isotropic hardening
rule ensures, that the hardening curves prescribed in each
stress state are recovered exactly in the simulations. It is
understood, that the material behavior exhibits both iso-
tropic and kinematic hardening and that a proper constitu-
tive model should regard a combination of both. However,
in order to get information about the percentage of kine-
matic hardening, unloading tests with subsequent load
reversal has to be performed. For convenience and due to
a lack of experimental data an isotropic hardening rule is
used. The determination of the yield surface parameters
based on the prescribed hardening curves in each stress
state is described in detail in Section 2.4.

Illustrations of the yield surface can be generated in
stress space or in invariant space, defined by the trans-
versely isotropic invariants summarized in Eq. (12). Having
defined a set of yield surface parameters, the representa-
tion in invariant space is unique. Furthermore, it is inde-
pendent from the coordinate system selected. In contrast,
representations in stress space are not unique, since each
point in the invariant space has various representations
in stress space. Hence, the representation of the yield
surface in the invariant space is more general. Fig. 2 shows
a schematic representation of the yield surface in the
r22–r33 stress space and in the r22–s12 stress space. A
representation of the transversely isotropic yield surface
in invariant space is shown in Fig. 3. On the left-hand side,
a representation in I3–

ffiffiffiffi
I1
p

-space is shown, setting I2 ¼ 0.
The interaction between yielding under transverse shear,
under uniaxial and under biaxial loadings can be seen.
The right-hand side in Fig. 3 gives a representation of the
yield locus in

ffiffiffiffi
I1
p

–
ffiffiffiffi
I2
p

-plane (I3 ¼ 0), showing the interac-
tion between transverse and in-plane shear. In both illus-
trations, the highlighted points are the ‘‘trigger points’’ of
the yield surface, in which yielding is controlled. That is,
in each of these points, an initial yield stress and a harden-
ing curve, giving the yield stress over the corresponding
plastic strain, can be predetermined. This is explained in
detail in Section 2.4.

For the algorithmic treatment within the framework of
a finite element analysis, the first and second derivatives of

 

 

 



Fig. 2. Schematic representation of the yield surface in stress space.

Fig. 3. Schematic representation of the yield surface in invariant space.
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the yield surface given in Eq. (13) with respect to the stres-
ses are required:

nf :¼ @rf ¼ @Ii
f @rIi ¼ a1 rpind þ ða2 � a1Þ ðArpind þ rpindAÞ

þ a3ð1� AÞ þ 2a32 I3ð1� AÞþ ¼: K : rþ L

@2
rrf ¼ a1 Ppind þ ða2 � a1ÞPpind

A þ 2a32ð1� AÞ � ð1� AÞ
¼: K ð15Þ

with the projection tensors defined as:

Ppind :¼ @rr
pind ¼ I� 1

2
ð1� 1Þ þ 1

2
ðA� 1þ 1� AÞ � 3

2
ðA� AÞ and

P
pind
A ¼ Ppind

A ijkl :¼ AimPpind
mjkl þ AmjP

pind
imkl :

ð16Þ

K is the constant bending tensor and L is the first deriva-
tive of the linear terms in r of the yield surface formula-
tion. With the derivatives Eq. (15), the yield function Eq.
(13) reads in a more general form:

f ðr; �ep;AÞ ¼ 1
2

r : K : rþ L : r� 1 6 0: ð17Þ
2.3. Plastic potential

As an extension of the model presented in Vogler et al.,
2010, a non-associated flow rule is introduced in this pa-
per. That is, the evolution of the plastic strains is not given
by the gradient of the yield surface nf :¼ @rf (associated
flow), but by the gradient of a plastic potential function
ng :¼ @rg, where g ¼ gðr;AÞ is the so called plastic flow
potential. The choice of a non-associated flow rule allows
the accurate prediction of the plastic Poisson coefficients
and of the volumetric plastic strains. The formulation of
the plastic potential g ¼ gðr;AÞ is similar to the yield func-
tion (13); however, the linear term I3 is omitted. The plas-
tic flow potential is defined as

gðr;AÞ ¼ b1 I1 þ b2 I2 þ b3I2
3 � 1: ð18Þ

The determination of the plastic potential parameters b1,
b2 and b3 with the objective to achieve a certain Poisson
coefficient is given in Section 2.4.2. For the time integration
of the constitutive equations, the first and second deriva-
tive of g ¼ gðr;AÞwith respect to the stresses are required,
see also Eq. (15). The forth order tensor M reads:

M ¼ b1 Ppind þ ðb2 � b1ÞPpind
A þ 2b32ð1� AÞ � ð1� AÞ;

ð19Þ

where the projection tensors Ppind and P
pind
A are given in Eq.

(16). The first derivative of the plastic potential with re-
spect to the stresses reads:
ng :¼ @rg ¼M : r: ð20Þ
The plastic flow potential Eq. (18) reads in a more general
form:

gðr;AÞ ¼ 1
2

r : M : r� 1: ð21Þ
2.4. Parameter identification

In the following, the determination of the six yield sur-
face parameters in Eq. (13) and of the three plastic poten-
tial parameters in Eq. (18) is explained in detail.  
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2.4.1. Yield surface parameters
For each of the trigger points of the yield locus, the ini-

tial yield stress and a hardening curve, giving yield stress
vs. corresponding plastic strain, can be determined. The
corresponding plastic strain in each loading state is related
to the equivalent plastic strain, which is defined here as

�ep :¼
ffiffiffi
1
2

r
jjepjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ep

ije
p
ij

r
: ð22Þ

Note that this is not the equivalent plastic strain used in
von Mises plasticity. The plastic strains in uniaxial loading
transverse, biaxial loading transverse and shear loading
(in-plane and transverse) are related by a corresponding
factor with the equivalent plastic strain �ep :

ep
uni ¼ f corr

uni � �ep

ep
bi ¼ f corr

bi � �ep

ep
s ¼ f corr

s � �ep

ð23Þ

The factors f corr
uni ; f corr

bi and f corr
s in Eq. (23) are directly depen-

dent on the choice of the plastic potential parameters
b1; b2 and b3 in Eq. (18). The determination of these factors
is explained in Section 2.4.2.

For each loading state, a hardening curve giving yield
stress Y ð::Þ vs. corresponding plastic strain ep

ð::Þ must be pre-
scribed for transverse shear YTRðep

s Þ, in-plane shear YIPðep
s Þ,

uniaxial tension YUTðep
uniÞ, biaxial tension YBTðep

biÞ, uniaxial
compression YUCðep

uniÞ and biaxial compression YBCðep
biÞ.

These hardening curves are directly recovered in the plastic-
ity model by use of an isotropic hardening formulation. In
the algorithmic treatment required for the finite element
analysis, the hardening curves are given as tabulated data.
In each time step, a Table lookup is performed with the
equivalent plastic strain �ep as input value. Using Eq. (23),
the plastic strain for each stress state is obtained and the
corresponding yield stress is given by the respective harden-
ing curve. Having obtained the current yield stress via
Table lookup, an update of the yield surface parameters
að::Þ is done. Since the yield stresses Y ð::Þ ¼ Y ð::Þð�epÞ depend
on the equivalent plastic strain �ep, the að::Þ-parameters of
the yield surface formulation are also dependent on the
equivalent plastic strain, i.e. að::Þ ¼ að::Þð�epÞ. For reasons of
readability, this is omitted in Eqs. (24)–(33).

In the following, the determination of the yield surface
parameters að::Þ ¼ að::Þð�epÞ is explained in detail. The vector
of the preferred direction is set to a ¼ ½1 0 0 �T , i.e. the
1-direction is the fiber direction.

1. Transverse shear
�ep ! ep
s ¼ f corr

s � �ep !

! Y ðkÞTR ! r ¼
0 0 0

0 0 YTR

0 YTR 0

2
64

3
75 ! I1 ¼ Y2

TR;

I2 ¼ 0; I3 ¼ 0
Inserting the invariants into the yield condition Eq. (13)
gives:

 

f ¼ a1Y2
TR � 1 ¼ 0 ! a1 ¼ 1=Y2

TR ð24Þ 
2. In-plane shear
�ep ! ep
s ¼ f corr

s � �ep !

! Y ðkÞIP ! r ¼
0 YIP 0

YIP 0 0
0 0 0

2
64

3
75 ! I1 ¼ 0;

I2 ¼ Y2
IP ; I3 ¼ 0
Inserting the invariants into the yield condition Eq. (13)
gives:
f ¼ a2Y2
IP � 1 ¼ 0 ! a2 ¼ 1=Y2

IP ð25Þ
3. Transverse uniaxial tension
�ep ! ep
uni ¼ f corr

uni � �ep !

! Y ðkÞUT ! r ¼
0 0 0
0 YUT 0
0 0 0

2
64

3
75 ! I1 ¼

Y2
UT

4
;

I2 ¼ 0; I3 ¼ YUT
Inserting the invariants into the yield condition Eq. (13)
gives:
f ¼ a1
Y2

UT

4
þ at

3YUT þ at
32ðYUTÞ2 � 1 ¼ 0 ð26Þ
4. Transverse biaxial tension
�ep ! ep
bi ¼ f corr

bi � �ep !

! Y ðkÞT ! r ¼
0 0 0
0 YBT 0
0 0 YBT

2
64

3
75 ! I1 ¼ 0;

I2 ¼ 0; I3 ¼ 2YBT
Inserting the invariants into the yield condition Eq. (13)
gives:
f ¼ 2at
3YBT þ 4at

32ðYBTÞ2 � 1 ¼ 0 ð27Þ
Having defined a1 (Eq. (24)), equations (26) and (27) can be
solved for at

3 and at
32:  
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! at
32 ¼

1� YT
2YBT
�a1

Y2
T

4

Y2
T�2YBT YT

ð28Þ

! at
3 ¼ 1

2YBT
� 2at

32YBT ð29Þ

5. Transverse uniaxial compression
�ep ! ep
uni ¼ f corr

uni � �ep !

! Y ðkÞUC ! r ¼
0 0 0
0 YUC 0
0 0 0

2
64

3
75 ! I1 ¼

ðYUCÞ2

4
;

I2 ¼ 0; I3 ¼ �YUC
Inserting the invariants into the yield function Eq. (13) re-
sults in:
f ¼ a1
ðYUCÞ2

4
� ac

3YUC þ ac
32ðYUCÞ2 � 1 ¼ 0 ð30Þ

�ep ! ep
bi ¼ f corr

bi � �ep !

! Y ðkÞBC ! r ¼
0 0 0
0 YBC 0
0 0 YBC

2
4

3
5

6. Transverse biaxial compression
! I1 ¼ 0; I2 ¼ 0; I3 ¼ �2YBC
Inserting the invariants into the yield function Eq. (13)
yields:
f ¼ �2ac
3YBC þ 4ac

32ðYBCÞ2 � 1 ¼ 0 ð31Þ
Having defined a1 (Eq. (24)), Eqs. (30) and (31) can be
solved for ac

3 and ac
32:
! ac
32 ¼

1� YC
2YBC
�a1

Y2
C

4

Y2
C�2YBC YC

ð32Þ
! ac
3 ¼ 1

2YBC
� 2ac

32YBC ð33Þ
2.4.2. Plastic potential parameters
In order to define the parameters b1; b2 and b3 of the

plastic potential function Eq. (18), it is convenient to derive
these bð::Þ-parameters by stress valued quantities Ŷ ð::Þ in the
same way as the yield surface parameters að::Þ are obtained
by the yield stresses Y ð::Þ in various stress states. The bð::Þ-
values in dependence of the ‘‘potential stresses’’ Ŷ ð::Þ read
then:
b1 ¼ 1=ðŶTRÞ2;
b2 ¼ 1=ðŶ IPÞ2;

b3 ¼
1

ŶU

� b1

4
;

ð34Þ

with ŶU ¼ ŶUC ¼ ŶUT . The so called ‘‘potential stresses’’ Ŷ ð::Þ
have no direct physical meaning. They just serve as param-
eters in order to construct the plastic potential function in
analogy to the yield function. They make physically sense,
since they control plastic contractility (dilatancy) during
yielding. Furthermore, not the absolute values, but rather
the ratios of these values are relevant.

The determination of the potential parameters bð::Þ to
obtain a certain plastic Poisson ratio for a uniaxial stress
state is demonstrated in the following. The normalized
stress tensor for a uniaxial loading in the 2-direction reads

runi ¼
0 0 0
0 1 0
0 0 0

2
64

3
75: ð35Þ

Having already defined the plastic potential, the tensor M

is known and the tensor of the plastic strain increments
using a non-associated flow rule reads

Dep;uni ¼ Dcnþ1M : runi; ð36Þ

where Dcnþ1 is set to 1, because for defining the contractil-
ity and the plastic Poisson coefficients, the ratios of volu-
metric and deviatoric strains are of interest instead of the
absolute values. The plastic Poisson ratio is defined as:

mp
23 :¼ � ep;uni

22

ep;uni
33

ð37Þ

Note that in case of isochoric plastic deformation in the
transversely isotropic case, the plastic Poisson coefficient
equals 1, since no plastic deformations occur in the fiber
direction (1-direction). Compared to the isotropic case, a
Poisson ratio mp ¼ 0:5 means plastic incompressibility.
Since the plastic Poisson ratio is just defined for uniaxial
loadings, it does not give any information about contractil-
ity and dilatancy in arbitrary stress states. Therefore, the
plastic contractility Eq. (39) is introduced as a new quan-
tity. First, the volumetric plastic strain is introduced next:

ep
vol :¼ 1

2
trep ¼ 1

2
ep

ii: ð38Þ

Note that this is not the definition of the volumetric plastic
strain normally used in von Mises plasticity, which reads
ep

vol :¼ 1
3 trep. Having defined ep

vol and with the equivalent
plastic strain �ep Eq. (22), the plastic contractility jp is
introduced:

jp :¼ �
ep

vol
�ep

ð39Þ

In contrast to the plastic Poisson ratio, this quantity can be
evaluated in arbitrary stress states giving information
about plastic contractility. The plastic contractility jp has
the following properties:
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� 1 6 jp
6 1;

jp < 0 ! plastic dilatancy;

jp > 0 ! plastic compressibility;

jjpj ¼ 1 ! all plastic strains are volumetric;

jp ¼ 0 ! no volumetric plastic strains:

ð40Þ

Having determined a set of plastic potential parameters,
the factors f corr

uni ; f corr
s and f corr

bi used in Eq. (23) have to be
calculated:

f corr
uni :¼ ep

22
�ep
;

f corr
sh :¼ ep

12
�ep
;

f corr
bi :¼ ep

22
�ep
:

ð41Þ

The easiest way to obtain a parameter set predicting a de-
sired plastic Poisson coefficient is to use a simplified opti-
mization procedure. The proposed optimization procedure
is summarized in Table 1. It starts with a set of parameters
assuming plastic incompressibility. This is the case, when
ŶU ¼ 2ŶS holds. This yields mp ¼ �1, ep

vol ¼ 0 and
f corr
uni ¼ f corr

s ¼ 1 and the representation of the potential in
I1–I3-invariant space (see illustration in Table 1) degener-
ates to a straight line parallel to the I3-axis. In a next step,
the quantity ŶU can be reduced stepwise until the desired
value for the plastic Poisson ratio is achieved. Note, that in
order to have a correct Table lookup of the prescribed plas-
tic hardening curves, the correction factors also change.
Therefore, they have to be calculated after the definition
of the plastic potential parameters.

2.5. Non-associative elastoplasticity

Introducing a non-associated flow rule, the evolution
equation for the plastic strains ep reads:

_ep :¼ c@rgðr;AÞ ¼ cng ; ð42Þ

with the direction ng of the plastic flow defined in Eq. (20).
Inserting Eq. (42) into the elasticity law presented in Sec-
tion 2.1 and using the additive split (1), the stress rate
reads:

_r ¼ Ce : ð _e� _epÞ ¼ Ce : ð _e� cngÞ: ð43Þ

According to the definition of the equivalent plastic strain
Eq. (22), the evolution equation for the equivalent plastic
strain _�ep reads:

_�ep :¼
ffiffiffi
1
2

r
jj _epjj ¼ c

ffiffiffi
1
2

r
jjng jj: ð44Þ

The loading and unloading conditions are given by the
Kuhn–Tucker equations:

c P 0; f 6 0; fc ¼ 0: ð45Þ

In case of plastic loading c > 0 and f ¼ 0 holds, for unload-
ing respectively f < 0 and c ¼ 0. This can be summarized
with the consistency condition

_fc ¼ 0: ð46Þ
In case of plastic loading c – 0 ^ _f ¼ 0 holds and the con-
sistency parameter c can be obtained from the consistency
condition Eq. (46) using _f ¼ 0:

_f ¼ @rf _rþ @�ep f _�ep ¼! 0: ð47Þ

Inserting (43) and (44) in the consistency condition (47)
yields:

_f ¼ nf : Ce : ð _e� cngÞ þ @Kf@�ep Kþ @Lf@�ep Lð Þ
ffiffiffi
1
2

r
jjng jjc¼! 0:

ð48Þ

The derivatives @�ep K and @�ep L are given in Eqs. (67) and
(69), see Appendix. Solving Eq. (48) for c yields:

c ¼ nf : Ce : _e

nf : Ce : ng þ @Kf@�ep Kþ @Lf@�ep Lð Þ
ffiffi
1
2

q
jjng jj

: ð49Þ

Inserting Eq. (49) into Eq. (43) yields:

_r ¼ Ce : _e� nf : Ce : _e

nf : Ce : ng þ @Kf@�ep Kþ @Lf@�ep Lð Þ
ffiffi
1
2

q
jjng jj

ng

2
64

3
75

¼ Ce �
Ce : nf � ng : Ce

nf : Ce : ng þ @Kf@�ep Kþ @Lf@�ep Lð Þ
ffiffi
1
2

q
jjng jj

2
64

3
75 : _e;

ð50Þ

with the elastic–plastic continuum tangent

Cep : ¼ @er ¼ Ce �
Ce : nf � ng : Ce

nf : Ce : ng þ @Kf@�ep Kþ @Lf@�ep Lð Þ
ffiffi
1
2

q
jjng jj

2
64

3
75:

ð51Þ

 

 

2.6. Integration algorithm

To obtain a numerical solution, the evolution equations
of the internal variables ep and �ep are discretized in time at
Gauss-point level within a finite-element framework. For
the time integration, the backward Euler integration
scheme with a standard operator split (elastic predictor–
plastic corrector) is used, following a proposal of Eidel
(2005). Eidel (2005) introduced a time integration, which
is based on the reduction to one scalar variable. The algo-
rithmic treatment of the constitutive equations is shown
in detail in the appendix. An in-deep description of integra-
tion schemes for elastic–plastic constitutive equations is
given in Simo and Hughes (1998). The material model is
implemented in Abaqus via the user interface UMAT (for
Abaqus implicit) and VUMAT (for Abaqus explicit) (ABA-
QUS Manual, 2010).

3. Model verification and simulation results

In order to demonstrate the capabilities of the new
material model, a complete yield surface parameter identi-
fication for the carbon epoxy IM7-8552 is presented in 3.1.
Since not all required material tests are available, some
reasonable assumptions are made for the missing material 



Table 1
Determination of plastic potential parameters.

1. Give stress state (normalized)

runi ¼
0 0 0
0 1 0
0 0 0

2
64

3
75 resp: rs ¼

0 1 0
1 0 0
0 0 0

2
64

3
75;rbi ¼

0 0 0
0 1 0
0 0 1

2
64

3
75; . . .

0
B@

1
CA

2. Determination of mp and contractility jp

Set initial values: ŶU ¼ 2ŶS ! ep
vol ¼ 0; jp ¼ 0; mp ¼ 1; f corr

uni ¼ 1 ! ŶU :¼ 200; ŶS ¼ 100
(i) Give potential stresses: ŶU :¼ 200; ŶS ¼ 100
(ii) Calculate plastic strains, equivalent plastic strain and vol. plastic strain:

ep;uni ¼M : runi

�ep :¼
ffiffiffi
1
2

r
jjepjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ep

ije
p
ij

r

ep
vol :¼ 1

2
trep

(iii) Calculate plastic Poisson ratio and plastic contractility:

mp
23 :¼ � ep;uni

22

ep;uni
33

jp :¼ � ep
vol
�ep

Goto (i) and reduce ŶU until desired values of mp or jp are achieved
3. Calculate correction factor f corr

uni (resp. f corr
bi ; f corr

s )

f corr
uni :¼ ep;uni

22
�ep
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data. The objective in this section is to demonstrate the
capabilities of the new material model. After deducing
the material data for IM7-8552, simulations of the off-axis
and transverse compression tests Koerber et al. (2010) pre-
sented in 3.2 and of the triaxial tests (Pae and Rhee, 1995)
presented in 3.3 are shown as a model verification. It shall
be demonstrated, that with just one parameter set both the
off-axis compression tests and the triaxial tests can be
simulated.

3.1. Yield surface of IM7-8552 carbon epoxy

The material model presented in this paper represents
different hardening behavior in six stress states, as de-
scribed in 2.4.1. However, a complete characterization of
a composite is not always available. Especially when
addressing biaxial and triaxial loadings the specimens are
expensive to manufacture and the required test rigs are
complicated. A survey of test methods for composites un-
der multiaxial and out-of-plane loading conditions is given
in Olsson (2011). In addition, micromechanical models
with a discrete representation of the constituents could
provide relevant information to characterize the material
under multiaxial stress states (González and LLorca,
2007; Totry et al., 2008). Hereafter, a characterization for
the carbon epoxy IM7-8552 is derived, using experimental
data from Koerber et al. (2010) and Pae and Rhee (1995).
The deduction of missing material data and also possible
test programs in order to conduct a complete material
characterization for a unidirectional fiber matrix compos-
ite are discussed.

When modeling carbon fiber reinforced polymers
(CFRP), the hardening behavior in the tensile range
(I3 > 0) is of minor importance. Just under combined
shear-tension minor nonlinearities occur, whereas under
uniaxial tension and biaxial tension primarily brittle 



Fig. 4. Shear hardening behavior of IM7-8552.

Fig. 5. Uniaxial and biaxial hardening behavior of IM7-8552.
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behavior is observed. This can be understood by consider-
ing yielding and fracture as concurring mechanisms. The
greater the positive hydrostatic pressure, the more brittle
the material behaves and fracture occurs before any signif-
icant yielding predominates. However, uniaxial and biaxial
transverse tensile tests would complement the material
characterization. Possible experimental rigs for biaxial
tests are proposed by Welsh and Adams (2002), Welsh
et al. (2006) and Smits et al. (2006). Off axis tensile tests
are easy to perform and could serve as a validation. Since
the simulation examples presented hereafter are in the
compression range (I3 > 0), the assumed non-linearities
in the tensile range have no influence on these results.
However, the uniaxial transverse tension and the biaxial
transverse tension curves are assumed, based on computa-
tions using a representative volume element according
(Melro, 2011) with a discrete representation of fibers and
matrix.

In contrast to the uniaxial and biaxial transverse tensile
behavior, the shear yielding behavior and the uniaxial and
biaxial compression hardening behavior are essential to
have a good constitutive representation for FRP. The trans-
verse compression stress strain curve for IM7-8552 is di-
rectly measured in the 90� transverse compression tests
(Koerber et al., 2010). The in-plane shear stress–strain
curve is determined by a rotation of the stresses and
strains measured in the 45� off-axis compression test into
the shear plane, as described in Koerber et al. (2010). A
transverse shear test for IM7-8552 does not exist. A test
setup to perform transverse shear tests is presented in Pet-
tersson and Neumeister (2006) and would complement the
characterization of IM7-8552 presented in Koerber et al.
(2010). An alternative to deduce the transverse shear
behavior is the computation of representative volume ele-
ments modeling fiber and matrix (Melro, 2011, Ernst, 2009,
Totry et al., 2008). Melro (2011) demonstrated that the in-
plane shear yielding and the transverse shear yielding
behavior are similar. This is plausible since both transverse
shear and in-plane shear are matrix dominated loading
states. Based on these observations, the transverse shear
hardening curve is assumed by scaling down the in-plane
shear yielding curve with a factor 0.95. Since the off-axis
compression tests and triaxial tests are not sensitive to
transverse shear, this assumption is not verified. A possible
validation for the transverse shear behavior could be for in-
stance laminate bending tests with a sufficient number of
90� layers in the middle.

Biaxial compression tests are not available for IM7-
8552. Possible test setup for biaxial compression tests are
suggested by Welsh and Adams (2002), Welsh et al.
(2006) and Smits et al. (2006). In this paper, the biaxial
compression hardening behavior is deduced using triaxial
tests performed by Pae and Rhee (1995). Since the material
tested by Pae and Rhee (1995) is a Scotchply SP-319 pre-
preg carbon epoxy, the behavior for IM7-8552 is deduced
from these tests as explained in 3.3. Due to a lack of exper-
imental data, the biaxial compression hardening curve for
IM7-8552 is just assumed by scaling the uniaxial trans-
verse compression hardening curve. This assumption is
not experimentally verified. However, a scaling factor of
2.0 permits to approximate the triaxial tests (Pae and Rhee,
1995) presented in 3.3. The simulations of the triaxial tests
have shown a strong sensitivity with respect to the biaxial
transverse compression behavior, but not for simulating
the off-axis compression tests. Hence it can be concluded,
that the biaxial hardening behavior determines the plastic
behavior in the presence of high pressure.

Having determined the material behavior in all required
stress states, the hardening curves are obtained by reduc-
ing the total strains by the elastic part of the strains. For
use in a finite element code, the hardening curves are re-
quired as true stresses vs. true plastic strains. A detailed
description of preparing hardening curves out of experi-
mental data can be found in Vogler (2011).

In Figs. 4 and 5 the previously derived hardening curves
for carbon epoxy IM7-8552 are shown. In both illustra-
tions, the left-hand side shows yield stress vs. correspond-
ing plastic strains, the right-hand side shows stress vs.
total strains. In Fig. 4 the in-plane and transverse shear
hardening curves are given. Fig. 5 shows the hardening
curves for uniaxial and biaxial compression and uniaxial
and biaxial tension. The cross represents the respective
failure point in each stress state. In both the uniaxial and
biaxial tensile hardening curve it can be seen that there
are just minor pre failure nonlinearities. This is exactly that
range, where a ductile–brittle transition of the material
behavior occurs, see also Fig. 6. Fig. 6 shows the represen-
tation of yield surface, failure surface and plastic potential
in I3–

ffiffiffiffi
I1
p

– invariant plane. The concentric lines illustrate
the yield surface at different loading histories. They repre-
sent an inflation of the yield surface due to the applied iso-
tropic hardening formulation. On the tensile side (I3 > 0)
the plastic behavior is just assumed in order to ensure
the ductile–brittle transition observed in experiments.
The failure surface ‘‘cuts’’ the yield surface. As soon as a
certain stress state exceeds the failure surface, degradation

 

 



Fig. 6. Transversely-isotropic yieldsurface for IM7-8552 in I3 �
ffiffiffiffi
I1
p

invariant plane.

Fig. 7. Off-axis compression tests: Test specimen and FE-discretization.
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starts controlled by the smeared crack model presented in
Camanho et al. (2012).
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Fig. 8. Simulation of quasi-static off-axis and transverse comp
3.2. Quasi-static off-axis compression tests

With the yield surface parameters derived in Section 3.1,
the quasi-static off-axis and transverse compression tests of
a Hex-Ply� IM7-8552 UD carbon epoxy presented in Koerber
et al. (2010) are simulated. Since the in-plane shear behavior
and the transverse compression behavior are directly ob-
tained from the 45� respectively from the 90� test, the sim-
ulation of the off-axis tests is a verification of the proposed
material model and identification procedure. According
the test program Koerber et al. (2010), off-axis compression
tests with fiber angles h ¼ 15�, 30�, 45�, 60� and 75� and a
transverse compression test (h ¼ 90�) are simulated. To
model the off axis tests, a single cubic element, a coarse
mesh with 100 elements and a fine mesh with 800 elements
are used, whereby the same boundary conditions as in the
material tests are applied. That means, at the bottom the
specimens are fixed whereas at the top (load application)
the specimen can move in horizontal direction. In the exper-
iments this is realized by a thin layer of Molybdenum–Disul-
fide (MoS2) in order to minimize friction and to allow a
lateral deflection. The test specimen used by Koerber et al.
(2010) and the corresponding FE discretization showing
the fine mesh, the coarse mesh and the single cubic element
are depicted in Fig. 7. Abaqus (ABAQUS Manual, 2010) solid
elements C3D8 are chosen for the discretization. The simu-
lations are done with both Abaqus implicit (UMAT) and Aba-
qus explicit (VUMAT), where no noticeable difference
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between implicit and explicit analysis is observed. Fig. 8
shows the simulation results compared to the experimental
data obtained by Koerber et al. (2010). In nearly all cases a
very good agreement between the test data and the simula-
tions can be seen. Just in the 60� off axis compression test,
the hardening behavior is slightly underestimated. Further-
more, there is nearly no difference between the simulations
with the coarse mesh, with the fine mesh and with the single
cubic element.

3.3. Uniaxial compression tests under various hydrostatic
pressures

Hereafter, the simulations of uniaxial compression tests
of unidirectional 45� and 90� specimens under various lev-
els of hydrostatic pressures are presented. The simulated
tests shall reproduce the multiaxial stress states prevailing
in the experiments performed by Pae and Rhee (1995). The
testing system consists of two thick-walled pressure ves-
sels for applying the hydrostatic pressure and a hydraulic
cylinder for the subsequent uniaxial compression loading.
For the test samples laminated square section blocks of
dimension 0.953 mm � 0.953 mm � 3.81 mm are used.
For a detailed description of the sample preparation and
the experimental setup see (Pae and Rhee, 1995).

The material tested by Pae and Rhee is a Scotchply SP-
319 prepreg system. For the simulations however, the
material parameter identification for IM7-8552 carbon
Fig. 9. Mapping procedure for the 45� test sample: measured curves from Pae a

Fig. 10. Uniaxial compression tests under various levels of
epoxy presented in 3.1 is used. The objective is not to re-
cover exactly the test results from Pae and Rhee (1995)
with the material used there, but rather to show the appli-
cability of the new model with respect to regard yielding in
various stress states under multiaxial loading conditions.
Hence, the simulations of the triaxial tests should be
understood as a qualitative comparison in order to demon-
strate the capabilities of the material model.

Since the experiments under high pressures were not
performed with carbon epoxy IM7-8552, the behavior of
this material is deduced from the experimental data mea-
sured by Pae and Rhee (1995) for the Scotchply SP-319 using
a simple mapping procedure. Therefore, it is assumed that
the qualitative behavior of both materials under high pres-
sures is similar. That is, the measured curves under atmo-
spheric pressure for the 45� off-axis test and for the 90�

off-axis test of fiber epoxy IM7-8552 performed by Koerber
et al. (2010) are scaled by a factor in order to assume a sim-
ilar behavior as measured for the Scotchply SP-319 speci-
men by Pae and Rhee (1995). The same is done with the
failure points for the 45� specimen and 90� specimen. This
mapping procedure is illustrated in Fig. 9 for the 45� test
sample. The lowest curve at atmospheric pressure is the
curve measured in the 45� off-axis compression test by
Koerber et al. (2010). The hardening curves and failure
points at 1 kbar, 2 kbar and 3 kbar on the right hand side
are just scaled in order to map the nonlinear material
behavior measured for SP-319 at higher pressures to the

 

 

nd Rhee for Scotchply SP-319 (left) and assumed behavior for IM7-8552.

hydrostatic pressures, original elasticity parameters.  



Fig. 11. Uniaxial compression tests under various levels of hydrostatic pressures, reduced elasticity parameters.
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current material IM7-8552. Hence, the material curves and
failure points on the right hand side at 1 kbar, 2 kbar and
3 kbar represent an assumed material behavior for IM7-
8552 based on the experiments from Pae and Rhee (1995).

The Finite Element model is discretized with C3D8 solid
elements. A coarse mesh with 1� 1� 4 elements and a fine
mesh with 4� 4� 16 elements are used. As before, simula-
tions are done both in Abaqus implicit and Abaqus explicit.
According to the tests, the simulations are done in two steps.
In a first load step, the corresponding hydrostatic pressure is
applied, followed by a second load step, where the uniaxial
compression is applied. At first, the elastic properties are left
unchanged for all levels of hydrostatic pressures. These are
the elastic properties measured under atmospheric pres-
sure. The results for the 45� and for the 90� specimen with
the original elasticity parameters are shown in Fig. 10. It is
observed that for lower pressures the curves show a good
correlation with the assumed curves via scaling. The higher
the applied pressure, the more the simulated curves differ
from the assumed curves. The reason for this effect is that
not only the plastic behavior of the epoxy resin changes due
to high hydrostatic pressure, but also the elastic properties.
This has been also observed by Dupaix and Boyce (2007) and
Mi and Zheng (1998). In order to demonstrate this effect, the
elastic properties are reduced in a second simulation, see
Fig. 11. The elasticity parameters are now chosen in order to
fit the curve for the highest level of hydrostatic pressures in
each case, i.e. 3 kbar resp. 4 kbar for the 90� test sample,
whereby the plastic parameters are left unchanged. The re-
sults in Fig. 11 show a good agreement with the curves under
higher pressures (3 kbar and 4 kbar) but the curves at atmo-
spheric pressure and lower hydrostatical pressures do not
coincide very well.Summarizing the results it can be con-
cluded that by controlling yielding behavior in biaxial com-
pression the nonlinear behavior under high pressures can be
captured approximately. However, the change of the elastic
parameters should also be taken into account. This can be
accomplished with the introduction of an evolution equation
that describes the phase transformation of the epoxy resin
due to a drop of the glass transition temperature in the pres-
ence of high hydrostatic pressures.
4. Conclusions and outlook

The new material model presented in this paper is able to
predict the plastic deformation of polymer composite mate-
rials under general stress states using a simple model iden-
tification procedure based on stress-plastic strain curves. In
addition, the new non-associative flow rule enables the cor-
rect prediction of the plastic Poisson’s ratio. The comparison
between the model predictions and experimental data ob-
tained in off-axis compression test specimens showed an
excellent agreement. The simulations of uniaxial compres-
sion tests under various levels of hydrostatic pressure show
a good approximation of the pressure dependent yielding
behavior by simply assuming a biaxial compression harden-
ing curve. However, the reduction of the elastic properties
due to hydrostatic pressure has to be taken into account in
future developments. A visco-plastic extension of the model
can be done easily from a numerical point of view. However,
in order to capture the expected highly non-linear rate
dependency (Koerber et al., 2010), further characterization
tests for at least 2 higher strain rate regimes have to be per-
formed. Furthermore off-axis tensile tests and transverse
shear tests of IM7-8552 would complement the proposed
material characterization. Taking into account that the
material model controls yielding behavior in the tensile
range (I3 > 0), this constitutive model is also suitable for or-
ganic sheets and glass fiber reinforced fabrics (GFRP), where
more pronounced nonlinearities under tension are ob-
served. In future investigations, the model has to be vali-
dated at laminate level. Therefore, laminate bending tests,
component tests, open and filled hole tests and bolted joints
should be simulated. The combination of the plasticity mod-
el presented here with a smeared crack model that predicts
the onset and propagation of the ply failure mechanisms is
presented in an accompanying paper.
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Appendix A. Backward Euler time integration, following
a proposal of Eidel (2005)

Applying the backward Euler algorithm in the time
interval Dtnþ1 ¼ tnþ1 � tn with Dcnþ1 ¼ Dtnþ1c leads to the
update formula of the plastic strains at tnþ1 :  



Table 2
General-return algorithm.

1. Input data at Gauss point level

total deformation at tnþ1 : enþ1

internal variables at tn : ep
n; �ep

2. 1st operator: elastic predictor

etr
nþ1 ¼ enþ1 � ep

n

rtr
nþ1 ¼ Ce : etr

nþ1

3. 2nd operator: plastic corrector
Local Newton Iteration
k ¼ 0 Set initial values rðk¼0Þ

nþ1 ¼ rtr
nþ1; ð�e

p
nþ1Þ

ðk¼0Þ ¼ �ep
n;

Dcðk¼0Þ
nþ1 ¼ 0

(i) F
ðkÞ
nþ1 ¼ Iþ DcðkÞnþ1Ce : M

h ið�1Þ

rðkÞnþ1 ¼ F
ðkÞ
nþ1 : rtr

nþ1

(ii) Table Lookup:

�ep ! Hardening Curves! aðkÞ1 ;aðkÞ2 ;aðkÞ3 ;aðkÞ32

! K
ðkÞ
nþ1; L

ðkÞ
nþ1

f ðkÞnþ1 ¼
1
2
rðkÞnþ1 : K

ðkÞ
nþ1 : rðkÞnþ1 þ LðkÞnþ1 : rðkÞnþ1 � 1

if f ðkÞnþ1 6 TOL Goto 4:; else continue

(iii) D2cðkÞnþ1 ¼ �
f jðkÞnþ1

@f jðkÞ
nþ1

@DcðkÞ
nþ1

(iv) Dcðkþ1Þ
nþ1 ¼ DcðkÞnþ1 þ D2cðkÞnþ1

ð�ep
nþ1Þ

ðkþ1Þ ¼ ð�ep
nþ1Þ

ðkÞ þ D2cðkÞnþ1jjM : rðkÞnþ1jj

(v) k kþ 1
4. Update internal variables at tnþ1

rnþ1 ¼ rðkÞnþ1; Dcnþ1 ¼ Dck
nþ1; �ep

nþ1 ¼ ð�e
p
nþ1Þ

k

ep
nþ1 ¼ ep

n þ Dcnþ1 M : rnþ1½ �

5. Algorithmic tangent modulus

Calgo
ep ¼

drnþ1

denþ1
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ep
nþ1 ¼ ep

n þ Dt _ep
nþ1 ¼ ep

n þ Dc@rgnþ1: ð52Þ

The assumed additive split of the strains Eq. (1) and the
elastic law give the elastic trial step:

etr
nþ1 :¼ enþ1 � ep

n ¼ C�1
e rnþ1 þ Dcnþ1@rgnþ1;

rtr
nþ1 :¼ Ce : etr

nþ1 ¼ rnþ1 þ Dcnþ1Ce : @rgnþ1:
ð53Þ

Using Eq. (20), the elastic trial stresses read:

rtr
nþ1 ¼ rnþ1 þ Dcnþ1Ce : M : rnþ1

¼ Iþ Dcnþ1Ce : M
� �

: rnþ1:
ð54Þ

Conversion to rnþ1 yields:

rnþ1 ¼ Iþ Dcnþ1Ce : M
� ��1

: rtr
nþ1

¼ Fnþ1 : rtr
nþ1;

with Fnþ1 ¼ Iþ Dcnþ1Ce : M
� ��1

:

ð55Þ

In case of plastic yielding, fnþ1ðrtr
nþ1;A; �e

p
nþ1ÞP 0 holds, and

the yield condition gives an algebraic constraint that has to
be fulfilled at the end of the considered time step tnþ1:

fnþ1ðrnþ1;A; �ep
nþ1Þ¼

! 0: ð56Þ

Inserting Eq. (55) into the yield function Eq. (56), gives an
equation to determine the consistency parameter Dcnþ1,
which is solved with the Newton–Raphson method. In a
non-iterated step, the residual reads:

Rf jðkÞnþ1 :¼ f ðkÞnþ1 ¼
1
2
rðkÞnþ1 : KðkÞ : rðkÞnþ1 þ LðkÞ

: rðkÞnþ1 � 1¼! 0; ð57Þ

where iterations are counted with index ðkÞ. The residual
Rf

nþ1 :¼ fnþ1 is developed into a Taylor-series at tnþ1 and
linearized:

Rf jðkÞnþ1 :¼ f ðrðkÞnþ1ðDcðkÞnþ1ÞÞ

Lin Rf jðkÞnþ1

h i
¼ f ðkÞnþ1 þ D2cðkÞnþ1

@f ðkÞnþ1

@DcðkÞnþ1

¼! 0:
ð58Þ

Eq. (58) can be solved for the increment of the consistency
parameter DcðkÞnþ1. Therefore, the root of the linearized
residual in Eq. (58) is needed:

D2cðkÞnþ1 ¼ �
f jðkÞnþ1

@f jðkÞ
nþ1

@DcðkÞ
nþ1

: ð59Þ

The update of the consistency parameter reads:

Dcðkþ1Þ
nþ1 ¼ DcðkÞnþ1 þ D2cðkÞnþ1: ð60Þ

The required derivative @Dcf ðkÞnþ1 in Eqs. (58) and (59) and the
complete formula of the updated consistency parameter
Dcðkþ1Þ

nþ1 (60) is derived hereafter.
The algorithmic consistent elastic–plastic material tan-

gent reads:

Calgo
ep ¼ Fnþ1 : Ce �

Ce : M : rnþ1 � Knþ1 : rnþ1 þ Lnþ1ð Þ : Fnþ1 : Ce

Knþ1 : rnþ1 þ Lnþ1ð Þ : Fnþ1 : Ce : M : rnþ1 þ @fnþ1
@Dcnþ1

0
@

1
A; ð61Þ

with the derivative @fnþ1
@Dcnþ1

given in Eq. (62).
The complete integration algorithm is summarized in
Table 2. A scheme of the Euler backward integration algo-
rithm is shown in Fig. 12.

Derivative @Dcf ðkÞnþ1:
Hereafter, the derivative @Dcf ðkÞnþ1 needed in Eqs. (58) and

(59) is derived. For reasons of readability the indices
(nþ 1) and (k) are omitted. Applying the chain rule, yields:

@f
@Dc

¼ @f
@r

:
@r
@Dc

þ @f
@K
� � � � @K

@Dc
þ @f
@L

:
@L
@Dc

; ð62Þ

with the partial derivatives @Kf and @Lf :

@f
@K
¼ r� r;

@f
@L
¼ L � 1:

ð63Þ

The partial derivative @rf is known from Eq. (15), the par-
tial derivative @Dcr can be determined applying the chain
rule and using the condition @Dcrtr ¼! 0 :

 

 



Fig. 12. Scheme of Euler backward return algorithm.

Table 3
Conversion of elasticity constants for transverse isotropy.

� Symmetry of elasticity tensor:
m12
E22
¼ m21

E11
; m13

E33
¼ m31

E11
; m23

E33
¼ m32

E22

� Coefficients of invariant representation:

k ¼ E22ðm23 þ m31m13Þ=D

a ¼ E22½m31ð1þ m32 � m13Þ � m32�=D

b ¼ E11ð1� m32m23Þ=D� E22½1� m21ðm12 þ 2ð1þ m23Þ�=D� 4l12

ll ¼ l12

lt ¼ l23

D ¼ 1� m2
32 � 2m13m31 � 2m32m31m13

� Engineering constants:
E22 ¼ E33 ; m23 ¼ m32; m12 ¼ m13; m21 ¼ m31; l12 ¼ l13

E11 ¼ �ðklt � 4kll � kbþ 2l2
t � blt � 2alt � 4lllt þ a2Þ=

ðkþ ltÞ
E22 ¼ �4ltðklt � 4llk� bkþ 2l2

t � blt � 2alt

� 4ltll þ a2Þ=Dt

m12 ¼ 2ltðkþ aÞ=Dt

m21 ¼ ðkþ aÞ=ð2kþ 2ltÞ
m23 ¼ �ða2 þ 2klt � bk� 4llkÞ=Dt

l12 ¼ ll

l23 ¼ lt

Dt ¼ 4llkþ bk� 4l2
t þ 4ltaþ 2blt þ 8lllt � a2
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0 ¼ @Dc Iþ DcCe : Mð Þ : r½ � ¼ @Dc F�1 : r
� �

¼ @DcF
�1� �

: rþ F�1 : @Dcr: ð64Þ

Conversion yields:

@Dcr ¼ �F : @DcF
�1 : r ¼ �F : Ce : M : r: ð65Þ

The derivative @DcK reads:

@K

@Dc
¼ @K

@�ep

@�ep

@Dc
; ð66Þ

with

@K

@�ep
¼ @K

@a1

@a1

@�ep
þ @K

@a2

@a2

@�ep
þ @K

@a32

@a32

@�ep

¼ ðPpind � P
pind
A Þ @a1

@�ep
þ P

pind
A

@a2

@�ep
þ 2ð1� AÞ � ð1

� AÞ @a32

@�ep
; ð67Þ

and the derivative @DcL reads

@L
@Dc

¼ @L
@�ep

@�ep

@Dc
; ð68Þ

with

@L
@�ep
¼ @L
@a3

@a3

@�ep

@�ep

@Dc
¼ ð1� AÞ @a3

@�ep

@�ep

@Dc
: ð69Þ

The derivation @�ep

@Dc in Eq. (66) and Eq. (68) yields:

@�ep

@Dc
¼

ffiffiffi
1
2

r
jjM : rjj þ Dc

ffiffiffi
1
2

r
@jjM : rjj

@r
@r
@Dc

¼
ffiffiffi
1
2

r
jjM

: rjj þ Dc
ffiffiffi
1
2

r
M

r
jjrjj

@r
@Dc

; ð70Þ

with the derivative @r
@Dc given in Eq. (65).

Furthermore, the following derivatives of the yield sur-
face parameters with respect to the equivalent plastic
strain are required:

@a1

@�ep
nþ1

;
@a2

@�ep
nþ1

;
@a3

@�ep
nþ1

and
@a32

@�ep
nþ1

: ð71Þ

These derivatives can be obtained easily from Eqs. (24),
(25), (28), (29), (32) and (33). Doing these trivial deriva-
tions, the derivatives of the corresponding yield stress with
respect to �ep are needed. Therefore, in each iteration step
ðkÞ both the yield stress and the slope of the hardening
curves (i.e. the current hardening modulus of each loading
state) are updated. In the material routine, this is done
with a so called Table lookup. That is, the hardening data
can be input as tabulated data giving yield stress vs. corre-
sponding plastic strain in the input file. Hereby, the equiv-
alent plastic strain ð�epÞðkÞnþ1 of each iteration step serves as
input value for reading in the yield stress and the corre-
sponding hardening modulus of each prescribed loading
state. The Table lookup is schematically depicted in the
small figures in Section 2.4.1, the realization in the mate-
rial routine is schematically shown in Fig. 12. Since the
hardening curves are given as yield stress vs. correspond-
ing plastic strain, relation Eq. (23) is used to obtain the cor-
rect plastic strain ep

uni; ep
bi and ep

s for each hardening curve.
With Eq. (63) to Eq. (71), all derivatives are known and the
root of the linearized residual Eq. (58) reads:



D2cðkÞnþ1 ¼ �
f jðkÞnþ1

@f jðkÞ
nþ1

@DcðkÞ
nþ1

¼
f jðkÞnþ1

K
ðkÞ
nþ1 : rðkÞnþ1 þ LðkÞnþ1

� �
: F
ðkÞ
nþ1 : Ce : M : rðkÞnþ1 þ rðkÞnþ1 � rðkÞnþ1 � � � �

@K
ðkÞ
nþ1

@DcðkÞ
nþ1

þ LðkÞnþ1 � 1 :
@LðkÞ

nþ1

@DcðkÞ
nþ1

	 
 : ð72Þ
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