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The facts regarding “regular” deformation bands (DBs) outlined in Part I of this series of articles are
related to the low-energy dislocation structure (LEDS) theory of dislocation-based plasticity. They
prompt an expansion of the theory by including the stresses due to strain gradients on account of
changing selections of slip systems to the previously known dislocation driving forces. This last and
until now neglected driving force is much smaller than the components considered hitherto, principally
due to the applied stress and to mutual stress-screening among neighbor dislocations. As a result, it
permits a near-proof of the LEDS hypothesis, to wit that among all structures which, in principle,
are accessible to the dislocations, that one is realized which has the lowest free energy. Specifically,
the temperature rises that would result from annihilating the largest DBs amount to only several
millidegrees Centigrade, meaning that they, and by implication the entire dislocation structures, are
close to thermodynamical equilibrium. This is in stark contrast to the assumption of the presently
widespread self-organizing dislocation structures (SODS) modeling that plastic deformation occurs
far from equilibrium and is subject to Prigogine’s thermodynamics of energy-flow-through systems.
It also holds out promise for future rapid advances in the construction of constitutive equations, since
the LEDS hypothesis is the principal basis of the LEDS theory of plastic deformation and follows
directly from the second law of thermodynamics in conjunction with Newton’s third law. By contrast,
all other known models of metal plasticity are in conflict with the LEDS hypothesis. In regard to
texture modeling, the present analysis shows that Taylor’s criterion of minimum plastic work is
incorrect and should be replaced by the criterion of minimum free energy in the stressed state. Last,
the LEDS hypothesis is but a special case of the more general low-energy structure (LES) hypothesis,
applying to plastic deformation independent of the deformation mechanism. It is thus seen that plastic
deformation is one of nature’s means to generate order, as a byproduct of the entropy generation
when mechanical work is largely converted into heat.

I. INTRODUCTION observation. As Taylor assumed a constant mean free-glide
path, he obtained a parabolic stress-strain curve.

THE plastic deformation of solids is arguably among Becker’s 1925 theory,[2,3,4] by contrast, predates the dislo-
the most important phenomena in our lives, let alone in cation concept. He proposed that crystals deform, much
engineering, yet it is among the least understood. This is like fluids and amorphous materials, via thermally activated
highly regrettable, especially in regard to technological met- events. While in noncrystalline materials, these events are
als whose deformation is mediated through glide disloca- place changes of individual atoms, Becker envisaged that
tions, because it stymies the development of effective in crystals, discrete volume elements would shear by elemen-
constitutive equations. These must inevitably be based on a tary glide steps. These glide events would be triggered when-
thorough understanding of the correlations between straining ever statistical thermal activation momentarily and locally
conditions, resulting deformation structures, and the generated a critical resolved shear stress. In this view, the
mechanical properties derived therefrom. apparent one-to-one correlation between applied stress and

This state of affairs is due to the lack of a unified approach. resulting strain, so familiar from work-hardening curves,
The foundational, basically irreconcilable publications are results (a) from the extremely steep stress dependence of
due to Taylor[1] and Becker,[2–6] respectively. Taylor pro- the activated glide event frequency in the vicinity of the
posed the first dislocation-based work-hardening theory critical stress; and (b) because the flow would soon cease
simultaneously with his introduction of the dislocation con- through work-hardening, the nature of which Becker did not
cept into materials science. According to it, on stress applica- attempt to elucidate. Rather, Becker had his theory tested
tion, dislocations virtually instantaneously multiply and by his pupils Boas[5] and Orowan[6] via low-strain creep tests
move via glide into configurations that are in mechanical of thin metal wires near room temperature.
equilibrium with the applied tractions. The resulting disloca- Becker’s theory is no longer under active consideration,
tion density is proportional to the square of the resolved but its successor theory, of self-organizing dislocation struc-
shear stress, in agreement with firmly established empirical tures (SODS), has for the past several years received the

lion’s share of attention. It is an adaptation of a model by
Holt[7] and Staker and Holt[8] to Prigogine’s thermodynamics
of energy-flow-through systems. SODS modeling has been
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“self-organize” via statistical, elementary, thermally acti- which we already saw to be a feature also of Taylor’s work-
hardening theory.vated glide events, mostly under the influence of their own

Next, as with increasing stress and dislocation density thestress systems. The resulting structures are believed to be
effect of the friction stress relatively decreases, while thefar from thermodynamical equilibrium, and the dislocation
availability of different Burgers vectors increases, transfor-motions are assumed to obey the thermodynamics applicable
mations of the dislocation patterns take place. In the stress-to “energy flow-through” systems, including living organ-
strain curve, these give rise to the successive work-hardeningism, for which Prigogine received the Nobel prize.
stages I through IV. And further, unless Bauschinger-typeThe historical evolution of work-hardening theory was
long-range internal stresses intervene, the flow stress doestreated in References 17 and 18. Importantly in this connec-
not change with stress reduction or reversal.tion, Taylor left the field soon after his 1934 article[19] and

Implicit in the outlined assumptions of the LEDS theorynever elaborated his theory. Its needed expansion is the low-
is the claim that always the lowest possible free energy ofenergy dislocation structure (LEDS) theory that has been
the “system” consisting of deforming tractions and deformedsystematically developed since 1962.[20] The LEDS theory
material, including its deformation structures, is approached.has recently been summarized in two extensive articles.[18,21]

This means that for vanishing intrinsic resistance againstIt recognizes the pattern initially proposed by Taylor (the
dislocation motion, i.e. for friction stress t0 5 0, under the“simple Taylor lattice”) as but one of a large range of disloca-
applied load which generated them, the observed dislocationtion equilibrium structures, dubbed LEDSs. By definition,
structures are in thermodynamical equilibrium and cannotLEDSs are structures in which, essentially instantaneously
be removed through heat treatments. The illusion that defor-through glide, near-neighbor dislocations mutually screen
mation structures embody excess free energy even whiletheir stress fields. Specifically, according to the LEDS the-
still under applied stress, arises through neglecting Newton’sory, Taylor lattices arise when three-dimensional dislocation
third law, i.e. that the tractions are an essential part of themobility is low, as in “planar-glide materials.” By contrast,
“system.”[18,21,22]

deformed “wavy-glide materials” are characterized by
As the work done by the tractions is 90 pct converted“mosaic block structures,” i.e., almost perfect mutually

into heat, plastic deformation is one of nature’s most effec-rotated volume elements that are delineated by dislocation
tive ways for increasing entropy. However, as a byproduct,rotation boundaries. The very widespread occurrence of
order is generated in the form of those structures that aremosaic block structures was empirically recognized long
required for force equilibrium (which might prominentlybefore the advent of dislocation theory. In fact, it represents
include twins, e.g., in hcp metals, and/or other defectsthe most stable known LEDS morphology. However, the
besides or instead of dislocations). Still, as soon as the trac-formation of a mosaic block structure requires a modicum
tions are reduced, the deformation structures are no longerof three-dimensional dislocation mobility, which is available
in equilibrium but do indeed embody excess free energy. Inin wavy- but not planar-glide materials.
the framework of the LEDS theory, therefore, except for

In a nutshell then, the LEDS theory adopts G.I. Taylor’s
minor readjustments on account of t0, dislocation structures

assumption that on stress application, dislocations virtually can be modified or removed through annealing only when
instantaneously assume low-energy equilibrium positions the applied forces are smaller than the previously highest.
that on cessation of stress increases are frozen-in except Only very recently[23,24] has it become clear that the LEDS
for possible annealing effects. For the remainder the LEDS theory is but a special case of the more general low-energy
theory does not include models. Rather it attempts to identify structure (LES) hypothesis. According to it, plastic deforma-
the structures of lowest free energy consistent with deforma- tion of solids always generates those structures that impart
tion conditions that are in mechanical equilibrium with the the lowest free energy to the system of deformed material
applied tractions, as demanded by the second law of thermo- and tractions among all that are accessible in principle. By
dynamics and Newton’s third law. It follows from the above way of illustration, the overall structure of the earth, with
that regardless of specific morphology, glide dislocations its metallic core, shells of ceramics graded according to
form configurations in which their respective long-range density, oceans, and atmosphere, is that of minimum free
stresses are screened. Moreover, also regardless of disloca- energy under the prevailing force of gravity. If gravity were
tion pattern, the parallel of Gauss’s law of electric fields extinguished, disintegration of the earth into space would
relative to electric charges applies: “In any dislocation struc- increase entropy. Yet, although the atmosphere and the
ture at rest, the respective resolved shear stresses cannot oceans would indeed soon so dissipate, the structure of the
exceed the friction stress, t0, anywhere along any dislocation solid earth is “frozen-in,” much like LEDSs on stress
line.”[20] Thus, dislocations mutually trap into energy troughs removal, in this case, because of cohesion among chunks
from which at least some must be released for further glide of matter. And yet, the earth’s ideal minimum free energy
to take place, either through bypassing of parallel dislocation configuration is not fully attained, namely, because of
segments in Taylor lattices or supercritical bowing of the “energy flow through” processes. Specifically, the water is
longest dislocation links in networks such as constitute dislo- collected in the oceans and does not cover the earth uni-
cation cell structures. In this light, workhardening arises formly, and the landmasses are not flat but peaked by high
because it requires an increasingly high stress to release mountain ranges. In this light, the equivalent of the SODS
dislocations from those energy troughs that with increasing theory would apply to continental drift and to the weather,
dislocation density gradually deepen and narrow. From this i.e., to deviations from the equilibrium structure that are
derives the already mentioned empirical law that, almost driven by “energy flow through.” Presumably, they proceed
independent of the specific dislocation structure, the flow in accordance with Prigogine’s thermodynamics, while ordi-

nary thermodynamics accounts for the overall structure ofstress is proportional to the root of the dislocation density,
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the earth. Similarly, the SODS theory does not apply to through pileups (Seeger and co-workers), modified pileups
(Mott and Hirsch and co-workers), Lomer-Cottrell or Hirththe generation of the dislocation deformation structures in

metals, but it may perhaps be fruitfully applied to anneal- locks, “hedges” (Kocks), hard zones among soft material in
a kind of composite structure (Mughrabi), or simply accumu-ing processes.

In agreement with the preceding explanation, the LES lations of mutually obstructive SODS that are assumed to
have formed far from equilibrium subject to Prigogine’shypothesis is believed to apply not to just a few special

examples but to deformed systems in general. Specifically, Nobel-prize winning thermodynamics of energy flow-
through systems (Kubin and Aifantis and co-workers), asit is claimed that as a quite general rule, while the great

preponderance of the work done on solids by deforming already outlined in Section I. However, none of those models
attempts to explain more than isolated facets of plasticity,tractions is transformed into heat at an overall increase of

entropy, some order in the deformed solids is generated as e.g., the slope of stage II or the onset of stage III, and none
recognize the existence of Taylor lattices or the prevalencea byproduct. This order is thermodynamically stable but only

as long as the tractions are in place. On removal of the of dislocation rotation boundaries in actual deformation
structures.tractions, that order constitutes excess free energy that can

be dissipated at further increase of entropy, mostly as a result Through postulating critically important structures that
contain excess free energy while subject to stresses wellof annealing.

Confidence in the LES hypothesis and indirectly in the beyond the friction stress, t0, at which glide dislocations are
highly mobile, all of the enumerated models violate theLEDS theory is greatly strengthened by recent observations

on fatigue-cycled lamellar diblock copolymers.[24,25] These second law of thermodynamics. The LEDS theory does not
suffer this defect. It has been patiently developed, beginningform kink bands of a morphology expected from the LES

hypothesis[24] and, further, on prolonged cycling as a function with a 1962 article.[20] In accordance with Section I, the most
basic, unvarying concept herein is that glide dislocations areof temperature and cycling frequency, always that lamella

orientation is being established for which the shear modulus bound to arrange into mutually stress-screened (i.e., to the
level of t0) dislocation structures, since they are the centersparallel to the fatigue stress is the lowest.[25] This is the

expected result from the LES hypothesis, since at peak stress, of strong internal stress fields while being mobile under
their respective resolved shear stresses in excess of t0. Con-the observed orientation yields the largest strain at the lowest

stress and, hence, lowest stored elastic strain energy. Simi- sequently, glide dislocations inevitably are the source of,
react to, and interact with shear stresses of whatever origin,larly, Laird and co-workers have already established that the

dislocation structures in constant-strain-amplitude fatigue of including contributions due to their own lines if curved.
Thus follows the already mentioned fact that at the positionmetals are uniquely related to the fatigue stress and are

reversible.[26,27] of every glide dislocation line at rest, everywhere and at all
times, the respective resolved shear stress cannot exceed theIn line with the preceding arguments, the decision between

the LEDS and SODS theories hinges on whether actual friction stress. If it did, the dislocations would move.
dislocation structures in deformed materials are close to or
far from thermodynamical equilibrium, as assumed in the

B. “Similitude”LEDS and SODS theory, respectively. Until now, it seemed
impossible to quantitatively decide this point: How does In a material of average dislocation density r, the average
one determine the closeness of approach to equilibrium of distance between dislocations is bound to compare with l >
observed dislocation structures? In this predicament, regular 1/!r. If the dislocations are arranged in the form of networks
deformation banding, as experimentally examined in Part I consisting of dislocation links between threefold nodes, as
of this article, provides an answer. As will be shown, based is the case in all dislocation cell structures characteristic of
thereon the approach to thermodynamical equilibrium is work-hardening stages III and IV, l is also a measure of the
found to be surprisingly close, namely, comparable to the dislocation link lengths. Always the longest of these would
heat energy that would raise the temperature of the material have to bow out supercritically to permit further deformation.
by only >1022 8C. Thereby the decision has been made in Thus, the flow stress in stages III and IV is the Frank–Read
favor of the LEDS (and LES) hypothesis. stress of always the longest dislocation links, given by

t ' t0 1 Gb/2l 5 t0 1 aGb!r [1]
II. BRIEF OUTLINE OF THE LEDS THEORY

with G the shear modulus, b the magnitude of the Burgers
vector, and the constant a somewhat smaller than unity. AlsoA. Mutual Dislocation Stress Screening Based on the
as a result of mutual stress screening, the average dislocationSecond Law of Thermodynamics
line energy is

The potential impact of the facts relating to regular defor-
UD > Gb2 {(1 2 n /2)/[4p (1 2 n)]} ln (l/b)

[2]
mation bands outlined in Part I on the possible expeditious
development of technologically useful constitutive equations > 0.1 Gb2 ln (l/b)
is incalculable. In order to appreciate this, a brief outline of
the present state of the theory will be helpful, as follows: where n is Poisson’s ratio.

Besides effortlessly yielding the very widely observedWith the exception of the LEDS theory, the various existing
models of dislocation-based crystal plasticity assume that empirical relationship of Eq. [1], this simple theory further

led to the “principle of similitude.”[20] According to it, inworkhardening results from some mutual obstruction among
glide dislocations, which is associated with excess energy. line with Eq. [1], under otherwise constant conditions an

increase of applied stress causes a reciprocal decrease of theIn those models, somehow or the other, glide dislocations
are supposed to mutually block each others progress, e.g., scale of the prevailing dislocation structure.
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C. General Expression for the Work-Hardening shock loading,[30] there are no exceptions to the LEDS princi-
ple.[31] In fact, as was already pointed out in Section I–DCoefficient
of Part I, the many studies on the development of dislocation

The outlined simple facts further lead to a general expres- cell microstructures of recent years, among them References
sion for the work-hardening coefficient, at least within work- 60 through 68 of Part I, essentially prove the LEDS principle.
hardening stages I through III, while conditions in stage IV
may be more complicated. Namely, based on similitude,
the average free path length of any newly generated glide E. The LEDS Hypothesis
dislocations will be some fixed multiple of the average dislo-

Some years after Reference 20, the LEDS theory (thencation spacing, i.e.,
still under the name of “mesh-length theory”) was expanded

gl > g/!r [3] to include what is now known as the LEDS hypothesis,[32]

namely, in its most recent formulation that “among all struc-with g the dimensionless “dislocation path parameter.”
tures which in principle would be accessible to the system,Hence, if the mean free path is limited by, say, the walls in
always those microstructures are formed which are in equi-a roughly cubic dislocation cell structure, and only the frac-
librium with the applied stresses and minimize the storedtion b of drg newly generated glide dislocations is trapped
energy of the system.” At the time,[32] it was phrased differ-in the material while the remainder is annihilated, then a
ently, namely, in conjunction with the principle of similitudenewly generated dislocation density increment drg causes a
as follows.[33] “The actual configuration must represent theshear strain increment
configuration of minimum free energy among all configura-

dg 5 glb drg 5 (gl b/b) dr ' (gb/b) (dr/!r) [4] tions accessible to the system under the given conditions of
straining such as speed of straining, temperature, stacking

However, according to Eq. [1], fault energy, etc. Therefore the same configuration but on
a scale inversely proportional to the difference between thedr /!r 5 (2/aGb) dt [5]
applied stress and t0, is also in mechanical equilibrium at

for any other stress (N.B. the stresses due to dislocations are
inversely proportional to the distance from the dislocationdg > (2g/aGb) dt [6]
axis) and thus is the configuration of minimum free energy

Thus, the specific work-hardening coefficient on account of among all accessible configurations. This is the principle of
rising dislocation density becomes similitude. As indicated already, the actual configuration

realized must be a function of the conditions of straining.
Q/G 5 (dt/dg)/G > ab/2g [7] However, even if these are kept constant, similitude must

break down eventually. Either the mechanical stability ofThe low work-hardening rate in stage I results from a
the configuration breaks down . . . Alternatively, additionallarge value of g, as mutual trapping only occurs among few
configurations with smaller free energy may become accessi-and far between dislocations, while the “dislocation retention
ble because, for example, it becomes possible to drag jogsparameter,” b, is unity and empirically a is always near
effectively, or cross slip, conservative climb or climbone-third within a factor of 2 or so. Once the material is
becomes easy.”essentially filled with glide dislocation structures, as is the

case in stages II and III, g is likely to be about 30, again
within a factor of 2 or so,[28] so that one obtains, very roughly,

F. Dislocation Cell Size Refinement in Stages III and IVQ/G ' b/200. The empirical value of Q/G > 1/200 for
stage II therefore suggests that b ' 1, i.e., that the large The last consideration in the preceding quote, regarding
majority of glide dislocations is trapped in stage II. However, the cessation of similitude with one form of LEDS and the
based on similitude in conjunction with Eq. [7], the rapidly consequent establishment of another LEDS which in turn is
decreasing work-hardening rate in stage III can hardly be subject to similitude, explains the origin of work-hardening
due to a change in a and/or g but must be caused by an stages. Since these early insights,[20,28–32] the theory has been
increasing rate of mutual dislocation annihilation, i.e., dimin- greatly expanded and refined. Herein the next great step
ishing b. And indeed it may be concluded that, except in forward was the solution to a previously perplexing question
stage I when g is large and somewhat variable, the depen- regarding the cell structures in stages III and IV: Why, with
dence of Q/G on flow stress mirrors the dependence of b the specific dislocation line energy decreasing with angular
on flow stress and thus dislocation density.[18,20,28]

misorientation of cell walls (Eq. [2]), do cells not grow
indefinitely but continue to refine with flow stress in accor-
dance with the widely observed empirical relationship for

D. LEDSs and the LEDS Principle the average cell diameter
Structures of the universally expected kind, i.e., in which D 5 KGb/(t 2 t0) [8]

near-neighbor dislocations mutually screen their shear
stresses to the level of t0 so that Eq. [2] applies, have been where K is on the order of ten? The cause was found only

comparatively recently. It is the presence of strain gradients,named LEDS,[29] and the contention that in plastic deforma-
tion glide dislocations mutually trap into LEDSs (i.e., not of average wavelength D, which are unavoidable in any

mosaic block structure of mutually misoriented dislocationany of the obstructionist structures assumed to cause work-
hardening in competing models) has been called the “LEDS cells.[34] With the maximum shear stress due to those strain

gradients limited by the flow stress, the associated elasticprinciple.” To the author’s best knowledge and belief, in any
type of deformation under any conditions short of explosive strain energy is
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Uel ' t 2/6G [9] theory.[18,21] However, in planar-glide materials the corres-
ponding LEDS transformation, namely, from Taylor lattices

independent of cell size. Following the LEDS hypothesis, to cell structures, is not easily accomplished. It is therefore
those strain gradients will be replaced by corresponding delayed to higher stresses or may not take place at all,
dislocation walls; i.e., the structure will be “polygonized,” especially below TM /2. However, with that LEDS transfor-
once their energy becomes smaller than Uel. That wall energy mation, “planar-glide” materials at the same time assume
is, with Eq. [2], the wavy-glide mode.

In the stage III to stage IV LEDS transformation, theUP > 0.1 (b/D)t ln (G/t) [10]
equiaxed stage III cells give place to cell shapes that tend
to be homologous with the imposed shape changes. Theand for cubic cells the condition of UP # Uel leads to Eq.
associated free energy reduction arises through “relaxed con-[8] with[34]

straints,” somewhat analogous to the formation of DBs, i.e.,
K > 0.9 ln (G/t) [11] buying reduced mismatch stresses with a moderately

increased dislocation cell wall area at a total energy reduc-For typical values of G/t > 700, this yields K 5 6, to
tion. The microscopical details are very complex, and thebe compared with Raj and Pharr’s impressive analysis of
reader is referred to References 18 and 21 for further infor-available data[35] in support of Eq. [8], according to which
mation and references to the relevant literature.K > 8 but with a tendency to decrease with rising strain.

H. The Shape and Temperature Dependence of the Work-
Hardening CurveG. The Work-Hardening Stages: “Wavy” and “Planar”

In determining the shape of the stress-strain curve and itsGlide—Cells vs Taylor Lattices
temperature dependence, we make use of the following facts:

Stage II begins at the end of stage I, if any, with a “LEDS (1) The stress-strain curve mirrors the value of b as explained
transformation” that is rather well understood.[18,21] It leads (Section C); (2) significant deviations of b from unity are
to the planar dislocation structures of stage II, whereas stages overwhelmingly due to mutual dislocation annihilations; (3)
III and IV are characterized by dislocation cells of manifold mutual dislocation annihilations are possible only among
shapes. Basically, the stage II structures are tilt walls parallel locally parallel dislocation segments; (4) they occur on
to the primary glide plane with their tilt axis normal to account of mutual attractions among closely neighboring
the primary Burgers vector. In the so-called “wavy glide dislocations, driven by the dislocations’ self-stresses that
materials,” including almost all pure cubic metals as well fall off as 1/r from their axes; and (5) the average approach
as many alloys, they assume the form of “carpets” of densely among dislocations is proportional to l> 1/!r, which in
spaced dislocations that are separated by almost dislocation- turn is inversely proportional to the flow stress via Eq. [1].
free slabs of material. By contrast, in “planar-glide materi- Having thus established a connection between b and the
als,” the stage II tilt walls are composed of well-separated flow stress and thereby the stress dependence of the work-
dislocations that are more or less evenly spaced so as to hardening coefficient, Q, the work-hardening curve, t (g),
form (often rather complex) “Taylor lattices.” is found by integration. The result is a linear decrease of b

Both of these planar structures, aligned with the primary with the flow stress. The thereby implied linear dependence
glide plane, bespeak low or no three-dimensional dislocation of the work-hardening coefficient with flow stress in turn
mobility. This explains why b remains near unity and the yields the Voce curve for the work-hardening curve, in excel-
work-hardening coefficient remains high and nearly constant lent agreement with observation for stage III.
at about G/200 in stage II (Section C), since a modicum of Considering further the effect of thermal activation on
three-dimensional mobility is required for significant mutual mutual annihilation, one finds for the curves of Q/G as a
dislocation annihilation. function of stress a slow increase of the slope with increasing

Planar-glide materials mostly comprise fcc alloys with a deformation temperature and a regular displacement of the
low stacking fault energy for which a-brass is prototypi- intercepts of the Q/G curves with the stress axis, i.e., of the
cal.[36] In these, the flow stress is controlled by dislocation stress of projected zero work hardening. All these results
bypassing[18,21,28,36] instead of supercritical dislocation bow- are in fine agreement with experimental data in the litera-
ing as in dislocation cell structures Equations [1] and [4] ture.[18,21] In a nutshell, this is the LEDS theory. A full
through [7] are readily adapted to this case; too, and Eq. [7] exposition of it, including also a theoretical interpretation
continues to apply also in planar-glide but with a modified, of the mechanism of recovery, Hall-Petch and alloy harden-
numerically rather similar value of a.[18,21]

ing, slip line structures, strain rate dependence of the flow
Stage III begins when those planar-glide structures of tilt stress, and other topics, may be found in the recent survey

walls more or less parallel to the primary glide plane break articles.[18,21] Thus, the LEDS theory gives an account for
down and give place to a cell structure. This stage II/stage all of the major phenomena of dislocation-based crystal plas-
III LEDS transformation occurs at the so-called tIII stress ticity. Even so, many details still await the input of com-
that decreases with straining temperature. In wavy-glide puter modeling.
materials the stage II carpets readily transform into the more
or less equiaxed cell structure of stage III, and its beginnings III. THE ROLE OF DEFORMATION BANDS IN
are occasionally seen in micrographs, e.g., in Figure 3(a) of THE LEDS THEORY
Reference 18. According to a great deal of research by

A. Incorporating DBs into the LEDS TheorySeeger and Haasen and co-workers, the temperature and
speed dependence of tIII proves the involvement of cross- Quite deliberately, in order not to contaminate the LEDS

theory with dubious assumptions and render it unreliable, itslip herein, and this is also in agreement with the LEDS
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has throughout been developed from basic principles with hypothesis. This is due to the connection between the dislo-
cation spacing in cell walls and the associated lattice rota-a minimum of model making. This may already have become

apparent in the preceding explanations and is based on the tion angle
“theory of theories.” Namely, the probability that any theory f > b/l [12]
is correct, Pc , is at best the product of the corresponding

that was already used in deriving Eq. [10]. Namely, sinceprobabilities of all of the necessary underlying assumptions.
all glide dislocations contribute to the strain in accordanceThe very detrimental effect of using any but the most secure
with Eq. [4], there is no limit to the f values. Rather, theassumptions becomes apparent when considering that
larger the misorientation angles, the more favorable in termsalready three plausible assumptions, each with an 80 pct
of Eq. [2] are the energetics, subject only to dislocation cellprobability of being correct, yields Pc 5 0.83 5 0.52; i.e.,
refinement, which during straining continuously generatesa fifty-fifty chance of the theory being incorrect and presum-
new cell walls with low f values (Section II–F).ably not worth publishing.

It follows, then, that a widespread of cell wall misorienta-In the LEDS theory, therefore, all but the most secure
tions is to be expected based on the LEDS hypothesis. Thisassumptions have been strenuously avoided. As a result, it
accounts for the fact that “cell blocks” form with significantis sufficiently nonspecific to be broadly applicable and per-
angular misorientations among each other, themselves beingmits the introduction of deformation banding by simple
subdivided into “ordinary” cells, e.g., as observed first byexpansion without change in the preceding status, as follows.
Bay et al., [44,45,46] It follows also that the primary relationshipRestrictively, the only two requirements for DBs to fit
is between stress and dislocation cell size, (Eq. [8]), whereasharmoniously into the theory are (1) that DB boundaries are
Eq. [1] is only approximate. This causes a to decrease withLEDSs as defined previously i.e., are dislocation rotation
stress in addition to and beyond that decrease of a whichboundaries, (nearly) obeying Frank’s formula,[37] and (2)
results from the log term in Eq. [2] [28,32]. The aforemen-that they are at least predominantly formed of mutually
tioned complex synergy results because the evolving misori-trapped glide dislocations. Both of these features are already
entations due to trapped glide dislocations cause changes inestablished for all previously considered kinds of dislocation
Taylor factors and hence slip system selections; these in turnwalls,[38] and they have been additionally verified in the
cause additional strain gradients of the kind also associatedalready mentioned relevant articles cited in Part I.
with DBs, and these again give rise to modifications ofThe required expansion of the LEDS theory consists of
the pattern of new cell wall generation and their maturing.adding the mismatch stresses due to deviations from homolo-
Certainly, on a microscopic scale, the discussed synergy, ingous deformation to the previously recognized driving forces
conjunction with the rise of flow stress with increasing num-acting on dislocations. In the past, the decisive driving forces
ber of locally simultaneously acting slip systems, is thewere recognized as the applied stresses and the dislocation-
root cause of the evolution of texture components,[18,21,39] indislocation interactive stresses in accordance with Eq. [2].
agreement also with the various pertinent articles cited inThe discussed mismatch stresses are much smaller than these
Part I. Presumably it will be quite difficult to obtain pre-and therefore were overlooked. Even so, this expansion of
dictive relationships in this process. Yet such relationshipsthe theory is very valuable, as further discussed in Section B.
will constitute a decisive advance in the evolution of
improved constitutive equations.

B. “Geometrically Necessary” and “Redundant”
Dislocations IV. NEAR PROOF OF THE LEDS HYPOTHESIS

BASED ON DBsIn the past, the role of strain gradient energies associated
with random dislocation wall stresses has been recognized in While none of the considerations in Sections II and III

pose any problem in the LEDS theory but rather are inconnection with cell size refinement,[34] as already discussed
(Eqs. [8] through [11]), as well as, somewhat rudimentarily, excellent accord with it, they reveal the previously unrecog-

nized role played by the longer-range stresses about volum-also in texture formation.[39] These considerations must now
be expanded and refined. Namely, as a consequence of the ina operating with different slip system selections. That role

had escaped attention until now because in wavy-glide, theLEDS hypothesis, a peculiar synergy exists in regard to the
roles of “redundant dislocations” vs “geometrically neces- impact of those stresses on the stress-strain curve and work

hardening is minor. For most strength properties in wavy-sary” dislocations, or “nonredundant” dislocations in Weert-
man’s terminology,[40,41,42] i.e., those that are associated with glide, it does not matter much whether the segregation of

one to three slip systems in lieu of five takes the form ofstrain gradients. The critical consideration herein is the dual
role of glide dislocations trapped into cell walls and/or DB evident DBs or of smaller, less regular volume elements.

As already explained, this is for the reason that those longer-boundaries (Section 18 of Reference 18). On the one hand,
they are “incidental,”[43] since they were simply trapped into range stresses that are minimized through evident deforma-

tion banding are rather small. However, the very fact thatLEDSs out of which the applied stresses could not free them.
On the other hand, they are “geometrically necessary,”[43] they nonetheless have the potential of greatly affecting the

slip morphology, namely in the form of DBs, can be usedsince geometrically, all glide dislocations are the boundaries
across which the shear displacement changes by their spe- for a near proof of the LEDS hypothesis. To this end, we shall

consider how far from or near to thermodynamic equilibriumcific Burgers vector, b, so that a wall of trapped glide disloca-
tions necessarily defines the mutual lattice rotation specified DBs are formed, recognizing that DBs represent but one

part of the total LEDSs.by Frank’s formula.[37]

In a somewhat unexpected manner, this dual role of To begin with, Wstored, the free energy density stored in
LEDSs at flow stress t, is largely independent of detailedtrapped glide dislocations is intertwined with the LEDS
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morphology. Specifically, Eqs. [1] and [2], with a > 1/3,
ln, (1/b!r) > 6. Poisson’s ratio n 5 0.3, and a correction
factor of Mr 5 2 to take account of imperfect equilibration
and redundant dislocation within cell walls, yield

Wstored > MrrGb2{(1 2 n/2)/[4p (1 2 n)]} ln (1/b!r)
[13]

> 6t 2/G 5 6G g 2
el

where gel is the elastic shear strain. This compares with Wel,
the elastic strain energy density because of the applied flow
stress, e.g., in tension or compression, with M the Taylor
factor,

Wel 5 (1/2) «2
el E

5 (1 1 n) Gg 2
el /M 2 [14]

> 0.2 Gg 2
el (a)

5 Wstored /30

Meanwhile, for all but small plastic strains, gpl, the work-
input density is

Win > (2/3) tgpl 5 (2/3) Ggelgpl 5 (1/9) Wstored(gpl /gel) [15]

Hence, since typically gpl/gel is a large number, plastic defor-
mation is one of nature’s most effective ways of converting
mechanical energy into heat.

In order to assess how far from equilibrium LEDSs might
be, it is useful to compute the temperature rise if the stored
energy were converted into heat, i.e.,

DTstored 5 Wstored /cdm > 6Gg 2
el /(cdm) [16]

where c is the specific heat and dm the mechanical density.
For most metals of technological interest, the numerical
value of G/cdm at room temperature ranges about 15,000

(b)8C, and gel 5 1 pct is near the upper limit in the deformation
of technological materials. For this, Eq. [16] yields Fig. 1—(a) and (b) Optical micrographs of the etched midplane of Al-Cu-

Si after uniaxial compression at ambient temperature to 269 pct true strain
DTstored, gel > 6 3 1024 G/cdm > 9 8C [17] at two different magnifications, as indicated (Fig. 10 of Kulkarni et al.[50]).

within a factor of 2 or so. Meanwhile gpl is liable to exceed
unity, and the work-input density would heat the material energy of the banding is due in nearly equal parts to those two
through a few hundred degree Centigrade. contributions.[23,24,47,48] Seeing that the specific band bound-

These estimates do not support the assumption of SODS ary energy, G, is much more readily estimated than the energy
modeling that plastic deformation occurs far from equilib- of the end-stresses, the energy density due to deformation
rium. Yet, 9 8C heating amounts to roughly TM /100 and banding is therefore most conveniently written as
could still leave room for argument as to what “far” means

WDB > 2G/w [18]in this context. In fact, until recently, the last remaining
obstacle that was believed to stand in the way of the universal The ideal boundary energy may be found from Eqs. [1] and
acceptance of the LEDS theory and corresponding abandon- [2] with Eq. [12], but actually (following the early and
ing of the SODS approach was the perceived impossibility since then well-confirmed[39] observations by Bailey and
to prove the LEDS hypothesis. It was considered that it is Hirsch[49]), G is higher by the correction factor of Mr > 2
the nature of fundamental hypotheses that they can never because of point defects and redundant dislocations, which
be proven absolutely. And in the case of the LEDS hypothe- was already introduced in Eq. [13]. Thus, for n 5 0.3,
sis, the problem was compounded through the difficulty of as before,
accurately determining the free energies of the vast numbers

G > Mr f Gb {(1 2 n/2)/[4p (1 2 n)]} ln (1/f)
[19]

of intrinsically possible LEDSs.
Fortunately, this position is fundamentally changed when > (0.1 Mr f Gb/w) ln (1/f)

considering the energy density differences that cause defor-
The maximum value of G occurs at f 5 1/e 5 21.08 deg,mation banding, e.g., as in Figures 8 through 12 of Part I and
at which point with Mr 5 2, it isFigure 1 herein. Since the energy due to the band boundaries

decreases inversely with the average bandwidth, w, and the Gmax > 0.074Gb > 0.028Eb [20]
energy due to the misfit stresses, being principally concen-
trated at their ends, rises approximately linearly with w, the In general, G 5 f Gmax with f , 1, not only because angular
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misorientations fall short of f 5 21.08 deg but also because
of the cell walls of the underlying mosaic block structure.[23]

Hence, the equivalent temperature rise of deformation band
formation is

DTDB # 2 Gmax /wcdm > 0.148Gb/wcdm > 0.057Eb/w [21]

Table I presents some numerical values obtained for DBs
in Figures 8 through 11 of Part I and Figure 1 of the present
article. From these, it will be seen that DTDB in the selected
cases falls mostly below 1/100 of a degree Centigrade and
typically amounts to only one-tenth of DTel on account of (a)
the elastic energy due to the applied flow stress. In line with
the exposition in Section I, this proves for the particular
DBs considered that they are very close to equilibrium
indeed. Seeing that the DBs are but part of the whole complex
LED structure in the samples, this rules out the SODS
assumption that dislocation structures form far from equilib-
rium. This conclusion is further reinforced by the occasional
symmetry and exquisite regularity of deformation banding,
which cannot be explained by “self-organization” caused by
dynamic processes. An impressive example from our own
collection of micrographs has been presented in earlier publi-
cations.[23,50] based on SS Kulkarni’s Masters Thesis.[51] Per-

(b) (c)haps even more impressive is Figure 2 extracted from Reed
and McHargue’s research on DBs in extruded aluminum Fig. 2—Schematic of the deformation band structure in the cross sections

of initially symmetrically oriented, extruded aluminum crystals. The crystalssingle crystals.[52] The remarkable symmetry and refinement
exhibited the well-known double ^111& (majority) plus ^100& (minority)of the DB structures in this case bespeak the approach to
fiber texture, but both texture elements are of rather imperfect definition

equilibrium configurations. because of the dislocation cell structure in them. The minority ^100& oriented
volume elements are indicated in heavy black as embedded in the white-
background ^111& matrix, while DB boundaries free of ^100& texture compo-

V. DEFORMATION BAND MORPHOLOGY nent are given as fine dark lines. The ^100& texture elements predominantly
form thin seams along the boundaries of ^111& oriented deformation bands,

As already discussed, the morphology of DBs will very as indicated by the heavy dark lines, and also as small colonies within
nearly minimize the sum of the extra elastic mismatch strain ^111& matrix, indicated by stippling. Initial orientations are (a) [100] as

extruded at room temperature, and (b) [111] as extruded at room tempera-energy (Wa) plus the energy of the boundaries between the
ture, and (c) at liquid nitrogen temperature. Note the remarkable symmetrybands (WB). If, then, the flat parallel sides of an ideal family
and regularity of the structures, with the finest ^100& bands only one single

of bands of length L fit together with negligible mismatch, dislocation cell wide (Fig. 11 of Reed and McHargue[52]).
the elastic mismatch strain energy will be concentrated
within a zone of length law at the ends of the bands. Here,

Table I.

L w « gel s G 5 f Gmax Win Wel Wstored WDB DTin DTel DTstored DTDB

(mm) (mm) (M 5 2.5) (MPa) (N/m) (MJ/m3) (MJ/m3) (MJ/m3) (MJ/m3) (8C) (8C) (8C) (8C)

Al-0.5 pct Cu, Fig. 8 of Part I, top middle left, deformed at 2196 8C, assumed f 5 3/4
2.8 0.09 20.47 0.39 pct 110 0.41 37 0.082 2.5 0.0091 15.5 0.034 1.04 0.0038

Al-0.5 pct Cu, Fig. 9 of Part I, center middle right, deformed at 2196 8C, assumed f 5 1
4.6 0.12 20.68 0.43 pct 120 0.56 61 0.10 3.0 0.0094 25.6 0.042 1.25 0.0039

Al-0.5 pct Cu, Fig. 10 of Part I, center lower right, deformed at room temperature, assumed f 5 1
0.88 0.10 20.72 0.38 pct 108 0.56 58 0.083 2.3 0.011 24.4 0.035 0.97 0.0046

Al-0.5 pct Cu-1 pct Si, Fig. 11 of Part I, center, deformed at room temperature, assumed f 5 3/4
0.41 0.035 20.69 0.61 pct 173 0.41 89 0.20 5.3 0.023 37.4 0.087 2.2 0.0097

Al-0.5 pct Cu-1 pct Si, Fig. 1 of this article, average, deformed at room temperature, assumed f 5 3/4
0.18 0.02 20.69 0.61 pct 173 0.41 89 0.20 5.3 0.040 37.4 0.087 2.2 0.017

Stored energy densities (Wxx) and temperature rises (DTxx 5 Wxx/cdm , with c 5 880 J/kg 8C the specific heat and dm 5 2700 kg/m3 the
mechanical density) that would result if the stored energy were converted into heat, for five different compressed aluminum alloy samples
as listed. The symbols designate the following, respectively: L 5 average DB length, w 5 average DB width, « 5 true compression strain,
gel 5 elastic shear strain inferred from s 5 measured compression stress, assuming a Taylor factor of M 5 2.5 (compare Figs. 1 through
3 of Part I), G 5 specific DB boundary energy (Eqs. [19] and [20]), Win 5 plastic work input per unit volume (graphically derived from
Figs. 13 and 14 of Part I), Wel 5 0.2Gg2

el 5 energy density due to elastic strain while under load (Eq. 14), Wstored 5 inferred energy stored
in the dislocation cell structure (see eq. 13), and WDB 5 2G/w the energy density comprised in the DB structure.
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at the moment of band formation at flow stress tDB, the the Taylor minimum work criterion is unaffected by consid-
ering free energy instead of plastic work input, since itsshear stress will rise, in general, from tDB to tDB (1 1 da),

at an associated mismatch energy density of function is simply to always let the most highly stressed
slip systems operate. In conclusion, then, in future texture

Wa 5 (2law/L) t 2
DB [(1 1 da)2 2 1]/2G

[22] modeling, the Taylor minimum plastic work criterion must
be replaced by the minimum stored energy density criterion.> (2ladaw/L) t 2

DB /G

whereas the energy density due to the band boundaries is
VII. SUMMARY AND CONCLUSlONS

WB ' G/w [23]

1. For historical reasons that pertain more to sociologyThe energy minimum is found from d (Wa 1 WB)/dw 5 0 at
than science, protracted controversies in the area of

w 5 {(GLG)/[la (2da 1 d 2
a) t 2

DB]}1/2

[24]
work-hardening theory have delayed the development
of technologically useful constitutive equations.> {GLG/[2lada t 2

DB]}1/2

2. They may now be based on the LEDS theory as it
is fully consistent with the basic laws of physics andSince we are not now concerned with finding conservative
comprehensively explains all major facets of metal plas-estimates as in the previous section, and in fact the deforma-
ticity with a minimum of assumptions or model making.tion band boundary energy is reduced through the presence

3. In fact, the LEDS theory is but a special case of theof the ordinary cell walls,[23] the best value for G here is
more general LES hypothesis according to which plastic

G > Gmax /2 > 0.035Gb [25] work done on materials generates states of order that
are near thermodynamical equilibrium and that this con-One will therefore expect from Eqs. [24] and [25] that the
stitutes one of nature’s means to generate order.parameter

4. The observations on DBs discussed in Part I are readily
incorporated into the LEDS theory.j 5 [la(2da 1 d 2

a)] ' 0.035 b(L/w2)(G/tDB)2 [26]
5. These observations further permit a test of the LEDS

is nearly constant. This relationship was tested on the only hypothesis as to the degree to which actual dislocation
too restricted number of suitable micrographs from the litera- structures approach thermodynamical equilibrium.
ture and our own collection.[23] An average of j > 0.8 was 6. Whereas the total work input through the deforming
found, which is compatible with j 5 1.2 derived from the tractions is commonly equivalent to tens of degrees
best theoretically expected values of da > 1 and la > 0.4. Centigrade heating of the material and more, the ener-

gies stored in the dislocation structures and DBs would
heat the material through only about 1 8C and 0.01

VI. DEFORMATION BANDS AND TEXTURE
8C, respectively.

MODELING: REPLACING THE TAYLOR 7. That means that the dislocation structure is finely tuned
MINIMUM WORK CRITERION WITH THE so as to approach free energy minimization, i.e., thermo-

MINIMUM FREE ENERGY CRITERION dynamical equilibrium, to a remarkably close degree.
8. This result virtually proves the LEDS theory but is inThe derivation of the equilibrium value of w2/L in Eqs.

stark conflict with the assumption of SODS modeling[22] through [24] follows in outline the thoughts of Chin
that plastic deformation occurs far from equilibrium.and Wonsiewicz[47] and the more recent and much more

9. With the demonstrated success of the LEDS theory, thedetailed theoretical considerations of Lee et al.,[48] albeit
way is now open to begin the development of constitu-with one important modification: In the framework of the
tive equations based thereon.LEDS hypothesis, it is the energy density in the loaded state,

10. Accordingly, in future texture modeling, the Taylor cri-or in other words the free energy at the moment of DB
terion of minimum work input should be replaced byformation, that is minimized. By contrast, Chin and Wonsie-
the criterion of minimum free energy of the deformedwicz and Lee et al., in the continuing tradition of texture
material while under stress.modeling, minimized the plastic work input, i.e., Wpl.

Numerically, the difference in these two approaches is as
follows: For the data of w2/L given by Lee et al. for their
DBs in rolled copper of two widely different grain sizes,[48]
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drg increment of newly generated glide dislocations DTDB temperature rise if the energy stored in deforma-
tion bands, WDB, were converted into heatD average dislocation cell size in stages III and IV

DTstored temperature rise if the stored energy, Wstored,DB “regular” deformation band, i.e., a slab-like vol-
were converted into heatume element with a selection of active slip

la width of zone of enhanced stress, in units of w,systems differing from that in neighbor bands
on account of strain mismatch at DB endsE 5 s/« Young’s modulus, the ratio of tensile stress to

Q work-hardening coefficienttensile strain
n Poisson’s ratio.f 5 correction factor taking into account the pres-
f lattice rotation angle across a dislocation rotationG/Gmax ence of cell walls with f values of ,1/e

boundary, e.g., a cell wall or DB boundaryg the glide path parameter, being the mean free
r dislocation densitydislocation path length in units of the mean
t flow stress, critical resolved shear stressdislocation link length or spacing, l
tDB flow stress at the point of deformation bandG shear modulus

formationK numerical parameter in the order of ten, which
t0 friction stress, resolved shear stress required tolinks the cell size to the flow stress (Eq. [8])

move a straight, isolated dislocationl > average dislocation link length or distance
j measurable parameter linking various values rel-1/!r between dislocations in LEDSs

evant to DBs, theoretically expected to be notL average deformation band length
far from unity (Eq. [26]).LEDS dislocation structure within which near-neighbor
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stresses to the level of t0 REFERENCESMr > 2 factor by which the dislocation density in cell
walls exceeds the geometrically necessary 1. G.I. Taylor: Proc. R. Soc. (London), 1934, vol. 145, pp. 362-87, 388-

404, and 405-15.Pc probability that a theory is correct according to
2. R. Becker: Phys. Z, 1925, vol. 26, pp. 919-25.the theory of theories
3. R. Becker: Z Phys. 1925, vol. 3, p. 185.SODS dislocation structure expected from dislocation 4. R. Becker: Z. Technol. Phys., 1926, vol. 7 p 547.

self-organization far from equilibrium in 5. R. Becker and W. Boas: Metallwirtschaft, 1929, vol. 8, pp. 317-21.
accordance with Prigogine’s thermodynamics 6. R. Becker and E. Orowan: Z. Phys., 1932, vol. 79, pp. 566-72.

7. D.L. Holt: J. Appl. Phys., 1970, vol. 41, pp. 3197-3201.of energy-flow-through systems
8. M.R. Staker and D.L. Holt: Acta Mater., 1972, vol. 20, pp. 569-74.TM absolute melting point temperature
9. E.C. Aifantis: J. Eng. Mater. Technol., 1984, vol. 106, pp. 326-30.

UD average dislocation line energy in a LEDS 10. E.C. Aifantis: Mater. Sci. Eng., 1986. vol. 81, pp. 563-74.
(Eq. [2]) 11. E.C. Aifantis: Patterns, Defects and Microstructures in Non-Equilib-

rium Systems, NATO ASI Series, Martinus Nijhoff Publishers, Dor-Uel elastic strain energy associated with strain
drecht, The Netherlands, 1987, pp. 221-39.energy gradients in a mosaic block structure

12. D. Walgraef and E.C. Aifantis: Int. J. Eng. Sci., 1985, vol. 23, pp.
UP energy density associated with new cell walls 1351-58, 1359-64, and 1365-72.

being generated on account of Uel 13. Patterns, Defects and Microstructures in Non-Equilibrium Systems,
D. Walgraef, ed., NATO ASI Series, Martinus Nijhoff Publishers,w average deformation bandwidth
Dordrecht, The Netherlands, 1987.Wa energy density on account of strain mismatch at

14. L.P. Kubin: in Materials Science and Technology: A Comprehensive
DB ends Treatment, R.W. Cahn, P. Haasen, and F.L. Kramer, eds., VCH, Wein-

WB energy density on account of DB boundaries heim, 1993, vol. 6 pp. 138-90.
15. L.P. Kubin: in Stability of Materials, A. Gonis, P.E.A. Turchi, and J.WDB energy density on account of the presence of

Kudrnovsky, eds., Plenum Press, New York, NY, 1995, pp. 99-135.regular deformation bands 5 Wa 1 WB 16. B. Devincre and L.P. Kubin: Mater. Sci. Eng., Special Issue of ICSMA
Wel 5 elastic strain energy density on account of Conf., Prague, 1997, vol. A234, pp. 8-14.

t 2/G applied flow stress, t 17. D. Kuhlmann-Wilsdorf : Metall. Trans. A, 1985, vol. 16A, pp.
2091-2108.Win work input density on account of plastic strain

18. D. Kuhlmann-Wilsdorf : Mater. Res. Innov., 1998, vol. 1, pp. 265-97.application of gpl 19. G. Batchelor: The Life and Legacy of G.I. Taylor, Cambridge UniversityWstored energy density stored in the from of LEDSs Press, Cambridge, United Kingdom, 1996.
a > 1/3 the flow stress parameter, linking the flow stress 20. D. Kuhlmann-Wilsdorf : Trans. TMS-AIME, 1962, vol. 224, pp.

1047-61.to the dislocation density (Eq. [1])
21. D. Kuhlmann-Wilsdorf : Phil Mag., 1999, vol. A79, pp. 955-1008.b the dislocation retention parameter, being the
22. D. Kuhlmann-Wilsdorf : Scripta Metall. Mater., 1997, vol. 36, pp.fraction of newly generated glide dislocations 173-81.

that is trapped in the LEDS structure 23. D. Kuhlmann-Wilsdorf : Acta Metall. Mater., 1999, vol. 44, pp.
1699-712.gel 5 elastic shear stain at flow stress t

24. D. Kuhlmann-Wilsdorf and K.I. Winey: J. Appl. Phys., 1999 vol. 85,t /G
pp. 6392-99.gpl plastic strain between the undeformed state and 25. P.S. Pinheiro and K.I. Winey: Macromolecules, 1998, vol. 31, pp.

application of flow stress t 4447-53.
26. C. Laird, Z. Wang, B.-T Ma, and H.-F. Chai: Mater. Sci. Eng., 1989,G specific deformation band boundary energy

vol. A113, pp. 245-65.Gmax maximum value of G, attained for f $ 1/e 5
27. L. Llanes and C. Laird: Mater. Sci. Eng., 1993, vol. A161, pp. 1-12.21.08 deg (Eq. [20]) 28. D. Kuhlmann-Wilsdorf : Mater. Sci. Eng., 1989, vol. A113, pp 1-41.

da fractional increase of the local stress at deforma- 29. See foreword to Low-Energy Dislocation Structures, Proc. Int. Conf. on
Low-Energy Dislocation Structures, Charlottesville, VA, M.N. Bassim,tion band ends

2400—VOLUME 30A, SEPTEMBER 1999 METALLURGICAL AND MATERIALS TRANSACTIONS A



40. J. Weertman: Proc. R. Soc. (London), 1989, vol. A425, p. 291; 1991,W. A. Jesser, D. Kuhlmann-Wilsdorf, and H.G.F. Wilsdorf, Elsevier
Sequoia, Lausanne, 1986; see also Mater. Sci. Eng., 1986, vol. 81, vol. A435, pp. 43 and 69.

41. J. A. Hurtado and J. Weertman: Phil. Mag., 1993, vol. A68, p. 599.pp. 1-574; 1987, vol. 86, pp. 19-92.
30. L.E. Murr and D. Kuhlmann-Wilsdorf : Acta. Metall., 1978, vol. 26, 42. J. A. Hurtado and J. Weertman: Phys. status solidi, 1995, vol. (a)149,

pp. 173-86.pp. 847-57.
31. D. Kuhlmann-Wilsdorf : Phys. Status Solidi, 1987, (a)104, pp. 121-44. 43. D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater., 1991,

vol. 25, pp. 1557-62.32. D. Kuhlmann-Wilsdorf : in Workhardening, J.P. Hirth and J. Weertman,
eds., Gordon and Breach, New York, NY, 1968, pp. 97-132. 44. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf : Mater. Sci. Eng.,

1989, vol. A113, pp. 385-97.33. D. Kuhlmann-Wilsdorf : in Workhardening, J.P. Hirth and J. Weertman,
eds., Gordon and Breach, New York, NY, 1968, pp. 99-100. 45. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf : Mater. Sci. Eng.,

1992, vol. A158, pp. 139-46.34. D. Kuhlmann-Wilsdorf : Scripta Metall. Mater., 1996, vol. 34, pp.
641-50. 46. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf : Acta

Metall. Mater., 1992, vol. 40, pp. 205-19.35. S.V. Raj and G.M. Pharr: Mater. Sci. Eng., 1986, vol. 81, pp.
217-37. 47. G.Y. Chin and B.C. Wonsiewicz: Trans. AIME, 1969, vol. 245, pp.

871-72.36. D. Kuhlmann-Wilsdorf, H.G.F. Wilsdorf, and J.A. Wert: Scripta Met-
all. Mater., 1994, vol. 31, pp. 729-34. 48. C.S. Lee, B.J. Duggan, and R.E. Smallman: Acta Metall. Mater., 1993,

vol. 41, pp. 2265-70.37. F.C. Frank: Pittsburgh Symp. Plastic Deformation of Crystalline Solids,
Report No. NAVEXOS-P-834, Office of Naval Research, Washington 49. J.E. Bailey and P.B. Hirsch: Phil. Mag., 1960, vol. 5, pp. 485-97.

50. S.S. Kulkarni, E.A. Starke, Jr., and D. Kuhlmann-Wilsdorf : Acta Met-DC, 1950, p. 150; see also W.T. Read: Dislocations in Crystals,
McGraw-Hill, Inc., New York, NY, 1953, pp. 181-86. all. Mater., 1998, vol. 46, pp. 5283-5301.

51. S.S. Kulkarni: Master’s Thesis, University of Virginia, Charlottesville,38. D. Kuhlmann-Wilsdorf : Phys. Status Solidi, 1995, vol. (a)149, pp.
225-41. VA, 1997.

52. R.E. Reed and C.J. McHargue: Trans. AIME, 1967, vol. 239, pp.39. D. Kuhlmann-Wilsdorf : Scripta Metall. Mater., 1997, vol. 36, pp.
173-81. 1604-12.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 30A, SEPTEMBER 1999—2401




