Deformation Bands, the LEDS Theory, and Their Importance

in Texture Development: Part Il. Theoretical Conclusions

D. KUHLMANN-WILSDORF

The facts regarding “regular” deformation bands (DBs) outlined in Part | of this series of articles are
related to the low-energy dislocation structure (LEDS) theory of dislocation-based plasticity. They
prompt an expansion of the theory by including the stresses due to strain gradients on account of
changing selections of dlip systems to the previously known dislocation driving forces. This last and
until now neglected driving force is much smaller than the components considered hitherto, principally
due to the applied stress and to mutual stress-screening among neighbor dislocations. As a result, it
permits a near-proof of the LEDS hypothesis, to wit that among all structures which, in principle,
are accessible to the dislocations, that one is realized which has the lowest free energy. Specifically,
the temperature rises that would result from annihilating the largest DBs amount to only several
millidegrees Centigrade, meaning that they, and by implication the entire dislocation structures, are
close to thermodynamical equilibrium. This is in stark contrast to the assumption of the presently
widespread self-organizing dislocation structures (SODS) modeling that plastic deformation occurs
far from equilibrium and is subject to Prigogine’'s thermodynamics of energy-flow-through systems.
It also holds out promise for future rapid advances in the construction of constitutive equations, since
the LEDS hypothesis is the principal basis of the LEDS theory of plastic deformation and follows
directly from the second law of thermodynamics in conjunction with Newton’'sthird law. By contrast,
all other known models of metal plasticity are in conflict with the LEDS hypothesis. In regard to
texture modeling, the present analysis shows that Taylor’s criterion of minimum plastic work is
incorrect and should be replaced by the criterion of minimum free energy in the stressed state. Last,
the LEDS hypothesis is but a special case of the more general low-energy structure (LES) hypothesis,
applying to plastic deformation independent of the deformation mechanism. It is thus seen that plastic
deformation is one of nature’s means to generate order, as a byproduct of the entropy generation

when mechanical work is largely converted into heat.

[. INTRODUCTION

THE plastic deformation of solids is arguably among
the most important phenomena in our lives, let aone in
engineering, yet it is among the least understood. This is
highly regrettable, especially in regard to technological met-
as whose deformation is mediated through glide disloca
tions, because it stymies the development of effective
congtitutive equations. These must inevitably be based on a
thorough understanding of the correlations between straining
conditions, resulting deformation structures, and the
mechanical properties derived therefrom.

Thisstate of affairsisdueto thelack of aunified approach.
The foundational, basically irreconcilable publications are
due to TaylorlY and Becker,[>® respectively. Taylor pro-
posed the first dislocation-based work-hardening theory
simultaneously with his introduction of the dislocation con-
cept into material s science. According toit, on stressapplica-
tion, dislocations virtually instantaneously multiply and
move via glide into configurations that are in mechanica
equilibrium with the applied tractions. The resulting disloca-
tion density is proportional to the square of the resolved
shear stress, in agreement with firmly established empirical
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observation. As Taylor assumed a constant mean free-glide
path, he obtained a parabolic stress-strain curve.

Becker’s 1925 theory,>34 by contrast, predates the dislo-
cation concept. He proposed that crystals deform, much
like fluids and amorphous materials, via thermally activated
events. While in noncrystalline materials, these events are
place changes of individual atoms, Becker envisaged that
incrystals, discrete volume elementswoul d shear by elemen-
tary glide steps. These glide eventswould be triggered when-
ever statistical thermal activation momentarily and locally
generated a critical resolved shear stress. In this view, the
apparent one-to-one correlation between applied stress and
resulting strain, so familiar from work-hardening curves,
results (a) from the extremely steep stress dependence of
the activated glide event frequency in the vicinity of the
critical stress; and (b) because the flow would soon cease
through work-hardening, the nature of which Becker did not
attempt to elucidate. Rather, Becker had his theory tested
by his pupils Boad®™ and Orowan!® via low-strain creep tests
of thin metal wires near room temperature.

Becker’s theory is no longer under active consideration,
but its successor theory, of self-organizing dislocation struc-
tures (SODYS), has for the past several years received the
lion’s share of attention. It is an adaptation of a model by
Holt("! and Staker and Holt!® to Prigogine’'s thermodynamics
of energy-flow-through systems. SODS modeling has been
pioneered by Aifantis and Walgraefl®*¥ and is currently
most prominently associated with the name of Kubinf419
and Devincre and Kubin.'®! According to it, dislocations
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“self-organize” via statistical, elementary, thermally acti-
vated glide events, mostly under the influence of their own
stress systems. The resulting structures are believed to be
far from thermodynamical equilibrium, and the dislocation
motions are assumed to obey the thermodynamics applicable
to “energy flow-through” systems, including living organ-
ism, for which Prigogine received the Nobel prize.

The historical evolution of work-hardening theory was
treated in References 17 and 18. Importantly in this connec-
tion, Taylor left the field soon after his 1934 article™ and
never elaborated histheory. Its needed expansion is the low-
energy dislocation structure (LEDS) theory that has been
systematically developed since 1962.2% The LEDS theory
has recently been summarized in two extensive articles.[18:24
It recognizes the pattern initially proposed by Taylor (the
“simple Taylor lattice”) asbut one of alargerange of disloca-
tion equilibrium structures, dubbed LEDSs. By definition,
LEDSs are structures in which, essentially instantaneously
through glide, near-neighbor dislocations mutually screen
their stress fields. Specifically, according to the LEDS the-
ory, Taylor lattices arise when three-dimensional dislocation
mobility islow, asin “planar-glide materials.” By contrast,
deformed “wavy-glide materials’ are characterized by
“mosaic block structures,” i.e., amost perfect mutually
rotated volume elements that are delineated by dislocation
rotation boundaries. The very widespread occurrence of
mosaic block structures was empiricaly recognized long
before the advent of dislocation theory. In fact, it represents
the most stable known LEDS morphology. However, the
formation of a mosaic block structure requires a modicum
of three-dimensional dislocation mability, which isavailable
in wavy- but not planar-glide materials.

In a nutshell then, the LEDS theory adopts G.I. Taylor’s
assumption that on stress application, dislocations virtually
instantaneously assume low-energy equilibrium positions
that on cessation of stress increases are frozen-in except
for possible annealing effects. For the remainder the LEDS
theory does not include models. Rather it attemptsto identify
the structures of lowest free energy consistent with deforma:
tion conditions that are in mechanical equilibrium with the
applied tractions, as demanded by the second law of thermo-
dynamics and Newton's third law. It follows from the above
that regardless of specific morphology, glide dislocations
form configurations in which their respective long-range
stresses are screened. Moreover, also regardless of disloca
tion pattern, the parallel of Gauss's law of electric fields
relative to electric charges applies: “In any dislocation struc-
ture at rest, the respective resolved shear stresses cannot
exceed thefriction stress, 7, anywhere along any dislocation
line.”1?% Thus, dislocationsmutually trap into energy troughs
from which at least some must be released for further glide
totake place, either through bypassing of parallel dislocation
segments in Taylor lattices or supercritical bowing of the
longest dislocation linksin networks such as constitute dislo-
cation cell structures. In this light, workhardening arises
because it requires an increasingly high stress to release
dislocations from those energy troughs that with increasing
dislocation density gradually deepen and narrow. From this
derives the aready mentioned empirical law that, almost
independent of the specific dislocation structure, the flow
stress is proportional to the root of the dislocation density,
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which we already saw to be afeature also of Taylor’s work-
hardening theory.

Next, aswith increasing stress and dislocation density the
effect of the friction stress relatively decreases, while the
availability of different Burgers vectors increases, transfor-
mations of the dislocation patterns take place. In the stress-
strain curve, these giveriseto the successive work-hardening
stages | through V. And further, unless Bauschinger-type
long-range internal stresses intervene, the flow stress does
not change with stress reduction or reversal.

Implicit in the outlined assumptions of the LEDS theory
is the claim that always the lowest possible free energy of
the“system” consisting of deforming tractions and deformed
material, including its deformation structures, is approached.
This means that for vanishing intrinsic resistance against
dislocation motion, i.e. for friction stress 7, = 0, under the
applied load which generated them, the observed dislocation
structures are in thermodynamical equilibrium and cannot
be removed through heat treatments. Theillusion that defor-
mation structures embody excess free energy even while
still under applied stress, arisesthrough neglecting Newton's
third law, i.e. that the tractions are an essential part of the
“system.” [18,21,22)

As the work done by the tractions is 90 pct converted
into heat, plastic deformation is one of nature's most effec-
tive ways for increasing entropy. However, as a byproduct,
order is generated in the form of those structures that are
required for force equilibrium (which might prominently
include twins, eg., in hcp metals, and/or other defects
besides or instead of didocations). Still, as soon as the trac-
tions are reduced, the deformation structures are no longer
in equilibrium but do indeed embody excess free energy. In
the framework of the LEDS theory, therefore, except for
minor readjustments on account of 7, dislocation structures
can be modified or removed through annealing only when
the applied forces are smaller than the previously highest.

Only very recently!?>?4 hasit become clear that the LEDS
theory is but a special case of the more general low-energy
structure (LES) hypothesis. According to it, plastic deforma-
tion of solids always generates those structures that impart
the lowest free energy to the system of deformed material
and tractions among all that are accessible in principle. By
way of illustration, the overall structure of the earth, with
its metallic core, shells of ceramics graded according to
density, oceans, and atmosphere, is that of minimum free
energy under the prevailing force of gravity. If gravity were
extinguished, disintegration of the earth into space would
increase entropy. Yet, although the atmosphere and the
oceans would indeed soon so dissipate, the structure of the
solid earth is “frozen-in,” much like LEDSs on stress
removal, in this case, because of cohesion among chunks
of matter. And yet, the earth’s ideal minimum free energy
configuration is not fully attained, namely, because of
“energy flow through” processes. Specifically, the water is
collected in the oceans and does not cover the earth uni-
formly, and the landmasses are not flat but peaked by high
mountain ranges. In this light, the equivalent of the SODS
theory would apply to continental drift and to the weather,
i.e., to deviations from the equilibrium structure that are
driven by “energy flow through.” Presumably, they proceed
in accordance with Prigogine’s thermodynamics, while ordi-
nary thermodynamics accounts for the overall structure of
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the earth. Similarly, the SODS theory does not apply to
the generation of the dislocation deformation structures in
metals, but it may perhaps be fruitfully applied to anneal-
ing processes.

In agreement with the preceding explanation, the LES
hypothesis is believed to apply not to just a few special
examples but to deformed systems in general. Specifically,
it is claimed that as a quite genera rule, while the great
preponderance of the work done on solids by deforming
tractions is transformed into heat at an overall increase of
entropy, some order in the deformed solids is generated as
abyproduct. Thisorder isthermodynamically stable but only
as long as the tractions are in place. On removal of the
tractions, that order constitutes excess free energy that can
be dissipated at further increase of entropy, mostly asaresult
of annealing.

Confidence in the LES hypothesis and indirectly in the
LEDS theory is greatly strengthened by recent observations
on fatigue-cycled lamellar diblock copolymers.[?4%° These
form kink bands of a morphology expected from the LES
hypothesis?4 and, further, on prolonged cycling asafunction
of temperature and cycling frequency, always that lamella
orientation is being established for which the shear modulus
parallel to the fatigue stress is the lowest.[” This is the
expected result from the LES hypothesis, since at peak stress,
the observed orientation yieldsthe largest strain at the lowest
stress and, hence, lowest stored elastic strain energy. Simi-
larly, Laird and co-workers have aready established that the
dislocation structuresin constant-strain-amplitude fatigue of
metals are uniquely related to the fatigue stress and are
reversible.[2627

Inlinewith the preceding arguments, the decision between
the LEDS and SODS theories hinges on whether actual
dislocation structures in deformed materials are close to or
far from thermodynamical equilibrium, as assumed in the
LEDS and SODS theory, respectively. Until now, it seemed
impossible to quantitatively decide this point: How does
one determine the closeness of approach to equilibrium of
observed dislocation structures? In this predicament, regular
deformation banding, as experimentally examined in Part |
of this article, provides an answer. As will be shown, based
thereon the approach to thermodynamical equilibrium is
found to be surprisingly close, namely, comparable to the
heat energy that would raise the temperature of the material
by only =102 °C. Thereby the decision has been made in
favor of the LEDS (and LES) hypothesis.

Il. BRIEF OUTLINE OF THE LEDS THEORY

A. Mutual Dislocation Stress Screening Based on the
Second Law of Thermodynamics

The potential impact of the facts relating to regular defor-
mation bands outlined in Part | on the possible expeditious
devel opment of technologically useful constitutive equations
isincalculable. In order to appreciate this, a brief outline of
the present state of the theory will be helpful, as follows:
With the exception of the LEDS theory, the various existing
models of dislocation-based crystal plasticity assume that
workhardening results from some mutual obstruction among
glide dislocations, which is associated with excess energy.
In those models, somehow or the other, glide dislocations
are supposed to mutually block each others progress, e.g.,
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through pileups (Seeger and co-workers), modified pileups
(Mott and Hirsch and co-workers), Lomer-Cottrell or Hirth
locks, “hedges’ (Kocks), hard zones among soft material in
akind of composite structure (Mughrabi), or simply accumu-
lations of mutually obstructive SODS that are assumed to
have formed far from equilibrium subject to Prigogine's
Nobel-prize winning thermodynamics of energy flow-
through systems (Kubin and Aifantis and co-workers), as
already outlined in Section |. However, none of those models
attempts to explain more than isolated facets of platicity,
e.g., the slope of stage Il or the onset of stage 111, and none
recognize the existence of Taylor lattices or the prevalence
of dislocation rotation boundaries in actual deformation
structures.

Through postulating critically important structures that
contain excess free energy while subject to stresses well
beyond the friction stress, 7, at which glide dislocations are
highly mobile, all of the enumerated models violate the
second law of thermodynamics. The LEDS theory does not
suffer this defect. It has been patiently devel oped, beginning
with 21962 article.[*! In accordance with Section |, the most
basic, unvarying concept hereinisthat glide dislocations are
bound to arrange into mutually stress-screened (i.e., to the
level of 7p) dislocation structures, since they are the centers
of strong internal stress fields while being mobile under
their respective resolved shear stresses in excess of 7. Con-
sequently, glide dislocations inevitably are the source of,
react to, and interact with shear stresses of whatever origin,
including contributions due to their own lines if curved.
Thus follows the already mentioned fact that at the position
of every glide didocation line at rest, everywhere and at al
times, the respective resolved shear stress cannot exceed the
friction stress. If it did, the dislocations would move.

B. “ Smilitude”’

In amaterial of average dislocation density p, the average
distance between dislocations is bound to compare with | =
1/./p. If thedislocations are arranged in theform of networks
consisting of dislocation links between threefold nodes, as
isthe case in all dislocation cell structures characteristic of
work-hardening stages |11 and 1V, | is also a measure of the
dislocation link lengths. Always the longest of these would
haveto bow out supercritically to permit further deformation.
Thus, the flow stressin stages 111 and 1V isthe Frank—Read
stress of always the longest dislocation links, given by

T~ 1+ Gbl2l = 75 + aGb/p [1]

with G the shear modulus, b the magnitude of the Burgers
vector, and the constant & somewhat smaller than unity. Also
asaresult of mutual stress screening, the average dislocation
line energy is

Up = G2 {(1 — »/2)/[47(1 — »)]} In (I/b)
= 0.1 Gb?In (I/b)

where v is Poisson’s ratio.

Besides effortlessly yielding the very widely observed
empirical relationship of Eq. [1], this simple theory further
led to the “principle of similitude.”®@ According to it, in
line with Eq. [1], under otherwise constant conditions an
increase of applied stress causes areciprocal decrease of the
scale of the prevailing dislocation structure.
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C. General Expression for the Work-Hardening
Coefficient

The outlined simple facts further lead to ageneral expres-
sion for thework-hardening coefficient, at |east within work-
hardening stages | through 111, while conditions in stage 1V
may be more complicated. Namely, based on similitude,
the average free path length of any newly generated glide
dislocations will be somefixed multiple of the average dislo-
cation spacing, i.e.,

gd=9gJp [3]

with g the dimensionless “dislocation path parameter.”
Hence, if the mean free path is limited by, say, thewallsin
aroughly cubic dislocation cell structure, and only the frac-
tion B of dp, newly generated glide dislocations is trapped
in the material while the remainder is annihilated, then a
newly generated dislocation density increment dp, causes a
shear strain increment

dy = glb dgy = (gl b/B) dp =~ (gb/B) (dplJp)  [4]
However, according to Eq. [1],
dp//p = (2/aGb) dr (5]
for
dy = (2g/aGp) dr (6]

Thus, the specific work-hardening coefficient on account of
rising dislocation density becomes

0/G = (ddy)/G = apl2g [7]

The low work-hardening rate in stage | results from a
large value of g, as mutual trapping only occurs among few
and far between dislocations, whilethe " dislocation retention
parameter,” B, is unity and empiricaly « is aways near
one-third within a factor of 2 or so. Once the material is
essentially filled with glide dislocation structures, as is the
case in stages Il and 111, g is likely to be about 30, again
within afactor of 2 or so,[?%l so that one obtains, very roughly,
®/G ~ p/200. The empirical value of ®/G = 1/200 for
stage Il therefore suggests that 8 =~ 1, i.e, that the large
majority of glidedislocationsistrapped in stagell. However,
based on similitude in conjunction with Eq. [7], the rapidly
decreasing work-hardening rate in stage |1l can hardly be
due to a change in « and/or g but must be caused by an
increasing rate of mutual dislocation annihilation, i.e., dimin-
ishing 8. And indeed it may be concluded that, except in
stage | when g is large and somewhat variable, the depen-
dence of ®/G on flow stress mirrors the dependence of B
on flow stress and thus dislocation density.[28:20.28]

D. LEDSs and the LEDS Principle

Structures of the universally expected kind, i.e., in which
near-neighbor dislocations mutually screen their shear
stresses to the level of 7, so that Eq. [2] applies, have been
named LEDS,!?® and the contention that in plastic deforma-
tion glide dislocations mutually trap into LEDSs (i.e., not
any of the obstructionist structures assumed to cause work-
hardening in competing models) has been called the“LEDS
principle.” To the author’s best knowledge and belief, in any
type of deformation under any conditions short of explosive
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shock loading,® there are no exceptionsto the LEDS princi-
plelfY In fact, as was already pointed out in Section |-D
of Part I, the many studies on the development of dislocation
cell microstructures of recent years, among them References
60 through 68 of Part |, essentially provethe LEDS principle.

E. The LEDS Hypothesis

Some years after Reference 20, the LEDS theory (then
till under the name of “mesh-length theory”) was expanded
to include what is now known as the LEDS hypothesis,*3
namely, in its most recent formulation that “among all struc-
tures which in principle would be accessible to the system,
always those microstructures are formed which are in equi-
librium with the applied stresses and minimize the stored
energy of the system.” At the time,*3 it was phrased differ-
ently, namely, in conjunction with the principle of similitude
as follows.[*® “The actual configuration must represent the
configuration of minimum free energy among all configura-
tions accessible to the system under the given conditions of
straining such as speed of straining, temperature, stacking
fault energy, etc. Therefore the same configuration but on
ascae inversely proportional to the difference between the
applied stress and 7o, is aso in mechanical equilibrium at
any other stress (N.B. the stresses due to dislocations are
inversely proportiona to the distance from the dislocation
axis) and thus is the configuration of minimum free energy
among all accessible configurations. This is the principle of
similitude. As indicated already, the actual configuration
realized must be a function of the conditions of straining.
However, even if these are kept constant, similitude must
break down eventually. Either the mechanical stability of
the configuration breaks down . . . Alternatively, additional
configurationswith smaller free energy may become accessi-
ble because, for example, it becomes possible to drag jogs
effectively, or cross dlip, conservative climb or climb
becomes easy.”

F. Didlocation Cell Sze Refinement in Sages 11l and IV

The last consideration in the preceding quote, regarding
the cessation of similitude with one form of LEDS and the
conseguent establishment of another LEDS which in turn is
subject to similitude, explains the origin of work-hardening
stages. Sincethese early insights,[2%28-32 the theory has been
greatly expanded and refined. Herein the next great step
forward was the solution to a previously perplexing question
regarding the cell structuresin stages 11 and IV: Why, with
the specific dislocation line energy decreasing with angular
misorientation of cell walls (Eqg. [2]), do cells not grow
indefinitely but continue to refine with flow stress in accor-
dance with the widely observed empirical relationship for
the average cell diameter

D = KGb/(r — ) 8]

where K is on the order of ten? The cause was found only
comparatively recently. It is the presence of strain gradients,
of average wavelength D, which are unavoidable in any
mosaic block structure of mutually misoriented dislocation
cells.[3 with the maximum shear stress due to those strain
gradients limited by the flow stress, the associated elastic
strain energy is
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Uy ~ 72/6G [9]

independent of cell size. Following the LEDS hypothesis,
those strain gradients will be replaced by corresponding
didocation walls; i.e., the structure will be “polygonized,”
oncetheir energy becomes smaller than Ug. That wall energy
is, with Eq. [2],

Up = 0.1 (/D)7 In (G/7) [10]

and for cubic cells the condition of Up = Uy leads to Eq.
[8] witht34

K = 09In(G/7) [11]

For typical values of G/ = 700, this yields K = 6, to
be compared with Rg and Pharr’'s impressive analysis of
available datal®! in support of Eq. [8], according to which
K = 8 but with a tendency to decrease with rising strain.

G. The Work-Hardening Sages: “Wavy” and “ Planar”
Glide—Ceélls vs Taylor Lattices

Stage Il begins at the end of stage, if any, witha“LEDS
transformation” that is rather well understood.[*821 |t leads
to the planar dislocation structures of stagell, whereas stages
Il and 1V are characterized by dislocation cells of manifold
shapes. Basically, the stage Il structuresaretilt walls parallel
to the primary glide plane with their tilt axis norma to
the primary Burgers vector. In the so-called “wavy glide
materials,” including ailmost all pure cubic metals as well
asmany aloys, they assumethe form of “carpets’ of densely
spaced dislocations that are separated by almost dislocation-
free dlabs of material. By contrast, in “planar-glide materi-
als,” the stage Il tilt walls are composed of well-separated
dislocations that are more or less evenly spaced so as to
form (often rather complex) “Taylor lattices.”

Both of these planar structures, aligned with the primary
glide plane, bespeak low or no three-dimensional dislocation
mobility. This explains why B remains near unity and the
work-hardening coefficient remains high and nearly constant
at about G/200 in stage Il (Section C), since a modicum of
three-dimensional mohility isrequired for significant mutual
dislocation annihilation.

Planar-glide materials mostly comprise fcc aloys with a
low stacking fault energy for which a-brass is prototypi-
cal.[® In these, the flow stress is controlled by dislocation
bypassing!*8-21.2836] instead of supercritical dislocation bow-
ing as in dislocation cell structures Equations [1] and [4]
through [7] are readily adapted to this case; too, and Eq. [7]
continues to apply aso in planar-glide but with a modified,
numerically rather similar value of @.[*82

Stage 111 begins when those planar-glide structures of tilt
walls more or less parallel to the primary glide plane break
down and give place to a cell structure. This stage I1/stage
II1 LEDS transformation occurs at the so-called 7, stress
that decreases with straining temperature. In wavy-glide
meaterials the stage || carpets readily transform into the more
or less equiaxed cell structure of stage 11, and its beginnings
are occasionally seen in micrographs, e.g., in Figure 3(a) of
Reference 18. According to a great dea of research by
Seeger and Haasen and co-workers, the temperature and
speed dependence of 7, proves the involvement of cross-
slip herein, and this is aso in agreement with the LEDS
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theory.l'®24 However, in planar-glide materials the corres-
ponding LEDS transformation, namely, from Taylor lattices
to cell structures, is not easily accomplished. It is therefore
delayed to higher stresses or may not take place at all,
especialy below Ty /2. However, with that LEDS transfor-
mation, “planar-glide” materials at the same time assume
the wavy-glide mode.

In the stage Il to stage IV LEDS transformation, the
equiaxed stage |11 cells give place to cell shapes that tend
to be homologous with the imposed shape changes. The
associated free energy reduction arisesthrough “relaxed con-
straints,” somewhat analogous to the formation of DBs, i.e.,
buying reduced mismatch stresses with a moderately
increased didocation cell wall area at a total energy reduc-
tion. The microscopical details are very complex, and the
reader is referred to References 18 and 21 for further infor-
mation and references to the relevant literature.

H. The Shape and Temperature Dependence of the Work-
Hardening Curve

In determining the shape of the stress-strain curve and its
temperature dependence, we make use of thefollowing facts:
(1) Thestress-strain curve mirrorsthevalue of gasexplained
(Section C); (2) significant deviations of 8 from unity are
overwhelmingly due to mutual dislocation annihilations; (3)
mutual dislocation annihilations are possible only among
locally parallel dislocation segments; (4) they occur on
account of mutua attractions among closely neighboring
dislocations, driven by the dislocations self-stresses that
fall off as 1/r from their axes; and (5) the average approach
among dislocations is proportiona to |= 1/\/7), which in
turn is inversely proportional to the flow stress via Eq. [1].
Having thus established a connection between B and the
flow stress and thereby the stress dependence of the work-
hardening coefficient, ®, the work-hardening curve, 7(y),
is found by integration. The result is a linear decrease of 8
with the flow stress. The thereby implied linear dependence
of the work-hardening coefficient with flow stress in turn
yieldsthe Voce curvefor thework-hardening curve, in excel-
lent agreement with observation for stage Ill.

Considering further the effect of thermal activation on
mutual annihilation, one finds for the curves of ®/G as a
function of stressaslow increase of the slopewith increasing
deformation temperature and a regular displacement of the
intercepts of the ®/G curves with the stress axis, i.e., of the
stress of projected zero work hardening. All these results
are in fine agreement with experimental data in the litera-
ture’824 In a nutshell, this is the LEDS theory. A full
exposition of it, including also a theoretical interpretation
of the mechanism of recovery, Hall-Petch and alloy harden-
ing, dlip line structures, strain rate dependence of the flow
stress, and other topics, may be found in the recent survey
articles.[*821 Thus, the LEDS theory gives an account for
all of the major phenomenaof dislocation-based crystal plas-
ticity. Even so, many details still await the input of com-
puter modeling.

1. THE ROLE OF DEFORMATION BANDS IN
THE LEDS THEORY

A. Incorporating DBs into the LEDS Theory

Quite deliberately, in order not to contaminate the LEDS
theory with dubious assumptions and render it unreliable, it
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has throughout been developed from basic principles with
aminimum of model making. Thismay already have become
apparent in the preceding explanations and is based on the
“theory of theories.” Namely, the probability that any theory
is correct, P, is a best the product of the corresponding
probabilities of all of the necessary underlying assumptions.
The very detrimental effect of using any but the most secure
assumptions becomes apparent when considering that
aready three plausible assumptions, each with an 80 pct
probability of being correct, yields P, = 0.8° = 0.52; i.e.,
afifty-fifty chance of the theory being incorrect and presum-
ably not worth publishing.

In the LEDS theory, therefore, all but the most secure
assumptions have been strenuously avoided. As a resullt, it
is sufficiently nonspecific to be broadly applicable and per-
mits the introduction of deformation banding by simple
expansion without changein the preceding status, asfollows.

Restrictively, the only two requirements for DBs to fit
harmonioudly into the theory are (1) that DB boundaries are
LEDSs as defined previously i.e., are dislocation rotation
boundaries, (nearly) obeying Frank’s formula®7 and (2)
that they are at least predominantly formed of mutualy
trapped glide dislocations. Both of these features are already
established for all previously considered kinds of dislocation
walls,®® and they have been additionaly verified in the
already mentioned relevant articles cited in Part |.

The required expansion of the LEDS theory consists of
adding the mismatch stresses due to deviationsfrom homolo-
gous deformation to the previously recognized driving forces
acting on dislocations. In the past, the decisive driving forces
were recognized as the applied stresses and the dislocation-
dislocation interactive stresses in accordance with Eq. [2].
The discussed mismatch stresses are much smaller than these
and therefore were overlooked. Even so, this expansion of
thetheory isvery valuable, asfurther discussed in Section B.

B. “ Geometrically Necessary” and “ Redundant”
Dislocations

In the past, the role of strain gradient energies associated
with random dislocation wall stresses has been recognized in
connection with cell size refinement, 34 as already discussed
(Egs. [8] through [11]), as well as, somewhat rudimentarily,
also in texture formation.®¥ These considerations must now
be expanded and refined. Namely, as a consequence of the
LEDS hypothesis, a peculiar synergy exists in regard to the
roles of “redundant dislocations’ vs “geometrically neces-
sary” dislocations, or “nonredundant” dislocationsin Weert-
man’s terminology,[*94142 i e, those that are associated with
strain gradients. The critical consideration herein is the dual
role of glide dislocations trapped into cell walls and/or DB
boundaries (Section 18 of Reference 18). On the one hand,
they are “incidental,”*% since they were simply trapped into
LEDSsout of which the applied stresses could not free them.
On the other hand, they are “geometrically necessary,” !
since geometrically, all glide dislocations are the boundaries
across which the shear displacement changes by their spe-
cific Burgersvector, b, so that awall of trapped glidedisloca-
tions necessarily defines the mutual lattice rotation specified
by Frank’s formula[3"

In a somewhat unexpected manner, this dua role of
trapped glide dislocations is intertwined with the LEDS
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hypothesis. This is due to the connection between the dislo-
cation spacing in cell walls and the associated lattice rota-
tion angle

¢ = bll [12]

that was aready used in deriving Eg. [10]. Namely, since
al glide dislocations contribute to the strain in accordance
with Eq. [4], there is no limit to the ¢ vaues. Rather, the
larger the misorientation angles, the more favorable in terms
of Eq. [2] are the energetics, subject only to dislocation cell
refinement, which during straining continuously generates
new cell walls with low ¢ values (Section 11-F).

It follows, then, that a widespread of cell wall misorienta-
tionsis to be expected based on the LEDS hypothesis. This
accounts for the fact that “cell blocks” form with significant
angular misorientations among each other, themselves being
subdivided into “ordinary” cells, e.g., as observed first by
Bay et al., #4548l |t fol lows al so that the primary rel ationship
is between stress and dislocation cell size, (Eq. [8]), whereas
Eq. [1] is only approximate. This causes « to decrease with
stress in addition to and beyond that decrease of « which
results from the log term in Eq. [2] [28,32]. The aforemen-
tioned complex synergy results because the evolving misori-
entations due to trapped glide dislocations cause changesin
Taylor factors and hence slip system selections; thesein turn
cause additional strain gradients of the kind also associated
with DBs, and these again give rise to modifications of
the pattern of new cell wall generation and their maturing.
Certainly, on a microscopic scale, the discussed synergy, in
conjunction with the rise of flow stresswith increasing num-
ber of locally simultaneously acting slip systems, is the
root cause of the evolution of texture components,[1821:3% jn
agreement also with the various pertinent articles cited in
Part 1. Presumably it will be quite difficult to obtain pre-
dictive relationships in this process. Yet such relationships
will constitute a decisive advance in the evolution of
improved congtitutive equations.

IV. NEAR PROOF OF THE LEDS HYPOTHESIS
BASED ON DBs

While none of the considerations in Sections Il and 11l
pose any problem in the LEDS theory but rather are in
excellent accord with it, they reveal the previously unrecog-
nized role played by the longer-range stresses about volum-
ina operating with different dlip system selections. That role
had escaped attention until now because in wavy-glide, the
impact of those stresses on the stress-strain curve and work
hardening is minor. For most strength properties in wavy-
glide, it does not matter much whether the segregation of
one to three dlip systems in lieu of five takes the form of
evident DBs or of smaller, less regular volume elements.
Asalready explained, thisisfor the reason that those longer-
range stresses that are minimized through evident deforma
tion banding are rather small. However, the very fact that
they nonetheless have the potential of greatly affecting the
slip morphology, namely in the form of DBs, can be used
for anear proof of the LEDS hypothesis. To thisend, we shall
consider how far from or near to thermodynamic equilibrium
DBs are formed, recognizing that DBs represent but one
part of the total LEDSs.

To begin with, Wged, the free energy density stored in
LEDSs at flow stress 7, is largely independent of detailed
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morphology. Specifically, Egs. [1] and [2], with « = 1/3,
In, (Ub/p) = 6. Poisson’s ratio » = 0.3, and a correction
factor of M, = 2 to take account of imperfect equilibration
and redundant dislocation within cell walls, yield

Waorea = McpGE{ (1 — #/2)/[47(1 = 1]} In (UbJ/p) [13]
= 677G = 6G 73

where yy isthe elastic shear strain. This compares with W,
the elastic strain energy density because of the applied flow
stress, e.g., in tension or compression, with M the Taylor
factor,

Wy = (1/2) £2E
= (1+ ») Gy3/M2 [14]
=02 Gy3
= Wyye/30

Meanwhile, for all but small plastic strains, 7y, the work-
input density is

W, = (2/3) TVl = (2/3) Gy Yo = (v9) Wslored(')’pll')’el) [15]

Hence, sincetypically y,/ v« isalarge number, plastic defor-
mation is one of nature’'s most effective ways of converting
mechanical energy into heat.

In order to assess how far from equilibrium LEDSs might
be, it is useful to compute the temperature rise if the stored
energy were converted into heat, i.e.,

ATgored = Wetored/Clm = BG'}’E’I /(cdyy) [16]

where c is the specific heat and d,,, the mechanical density.
For most metals of technologica interest, the numerical
value of Glcd,, at room temperature ranges about 15,000
°C, and yy = 1 pct isnear the upper limit in the deformation
of technological materials. For this, Eq. [16] yields

ATyoreq 0 = 6 X 1074 Gledy, = 9°C [17]

within afactor of 2 or so. Meanwhile 1, is liable to exceed
unity, and the work-input density would heat the material
through a few hundred degree Centigrade.

These estimates do not support the assumption of SODS
modeling that plastic deformation occurs far from equilib-
rium. Yet, 9 °C heating amounts to roughly Ty/100 and
could still leave room for argument as to what “far” means
in this context. In fact, until recently, the last remaining
obstaclethat wasbelieved to stand in theway of the universal
acceptance of the LEDS theory and corresponding abandon-
ing of the SODS approach was the perceived impossibility
to prove the LEDS hypothesis. It was considered that it is
the nature of fundamental hypotheses that they can never
be proven absolutely. And in the case of the LEDS hypothe-
sis, the problem was compounded through the difficulty of
accurately determining the free energies of the vast numbers
of intrinsically possible LEDSs.

Fortunately, this position is fundamentally changed when
considering the energy density differences that cause defor-
mation banding, e.g., asin Figures 8 through 12 of Part | and
Figure 1 herein. Since the energy due to the band boundaries
decreases inversely with the average bandwidth, w, and the
energy due to the misfit stresses, being principally concen-
trated at their ends, rises approximately linearly with w, the
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(b)
Fig. 1—(a) and (b) Optical micrographs of the etched midplane of Al-Cu-
Si after uniaxial compression at ambient temperature to —69 pct true strain
at two different magnifications, asindicated (Fig. 10 of Kulkarni et al.[5%).

energy of the banding isduein nearly equal partsto thosetwo
contributions.[232447481 Seeing that the specific band bound-
ary energy, I', ismuch morereadily estimated than the energy
of the end-stresses, the energy density due to deformation
banding is therefore most conveniently written as

Wpg = 2I'w [18]

The ideal boundary energy may be found from Egs. [1] and
[2] with Eq. [12], but actually (following the early and
since then well-confirmed® observations by Bailey and
Hirsch®)), T is higher by the correction factor of M, = 2
because of point defects and redundant dislocations, which
was already introduced in Eq. [13]. Thus, for » = 0.3,
as before,

F'=M, ¢ Gb{(1 — v/2)/[[4=(1 — )]} In (V)
= (0.1 M, ¢ Gblw) In (1/¢)

The maximum value of I" occurs at ¢ = 1l/e = 21.08 deg,
at which point with M, = 2, it is

s = 0.074Gb = 0.028Eb [20]
In generd, I' = fI', with f < 1, not only because angular

[19]
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misorientations fall short of ¢ = 21.08 deg but al so because
of the cell walls of the underlying mosaic block structure.[?!
Hence, the equivalent temperature rise of deformation band
formation is

ATpg = 2T /wedy, = 0.148Gb/wed,, = 0.057Eb/w - [21]

Table | presents some numerical values obtained for DBs
in Figures 8 through 11 of Part | and Figure 1 of the present
article. From thesg, it will be seen that ATpg in the selected
cases falls mostly below 1/100 of a degree Centigrade and
typically amounts to only one-tenth of ATy on account of
the elastic energy due to the applied flow stress. In line with
the exposition in Section I, this proves for the particular
DBs considered that they are very close to equilibrium
indeed. Seeing that the DBsarebut part of thewhole complex
LED structure in the samples, this rules out the SODS
assumption that dislocation structures form far from equilib-
rium. This conclusion is further reinforced by the occasional
symmetry and exquisite regularity of deformation banding,
which cannot be explained by “self-organization” caused by
dynamic processes. An impressive example from our own
collection of micrographs has been presented in earlier publi-
cations.?>5% pased on SSKulkarni’s Masters Thesis.[>! Per-
haps even more impressive is Figure 2 extracted from Reed

and McHargue's research on DBs in extruded aluminum
single crystals.[® The remarkable symmetry and refinement
of the DB structures in this case bespeak the approach to
equilibrium configurations.

V. DEFORMATION BAND MORPHOLOGY

As already discussed, the morphology of DBs will very
nearly minimize the sum of the extra elastic mismatch strain
energy (W,) plus the energy of the boundaries between the
bands (Wg). If, then, the flat parallel sides of an ideal family
of bands of length L fit together with negligible mismatch,

Fig. 2—Schematic of the deformation band structure in the cross sections
of initially symmetrically oriented, extruded aluminumcrystals. Thecrystals
exhibited the well-known double (111) (mgjority) plus (100) (minority)
fiber texture, but both texture elements are of rather imperfect definition
because of the dislocation cell structurein them. The minority (100) oriented
volume elements are indicated in heavy black as embedded in the white-
background (111) matrix, while DB boundariesfree of (100) texture compo-
nent are given asfine dark lines. The (100) texture elements predominantly
form thin seams along the boundaries of (111) oriented deformation bands,
as indicated by the heavy dark lines, and also as small colonies within
(111) matrix, indicated by stippling. Initial orientations are (a) [100] as
extruded at room temperature, and (b) [111] as extruded at room tempera-
ture, and (c) at liquid nitrogen temperature. Note the remarkable symmetry
and regularity of the structures, with the finest (100) bands only one single
dislocation cell wide (Fig. 11 of Reed and McHarguel®?).

the elastic mismatch strain energy will be concentrated
within a zone of length A,w at the ends of the bands. Here,

Tablel.

L w € Yel g I' = fI'na Wi, Wy Witored Wobs ATi, ATy ATgored ATpg
(mm)  (mm) (M = 25) (MPaq) (N/m) MIm®  (MIm®) (MIm®) (MIm®) (°C) (°C) (°C) (°C)
Al-0.5 pct Cu, Fig. 8 of Part |, top middle left, deformed at —196 °C, assumed f = 3/4
28 009 -047 0.39pct 110 041 37 0.082 25 0.0091 155 0.034 104 0.0038
Al-0.5 pct Cu, Fig. 9 of Part |, center middle right, deformed at —196 °C, assumed f = 1
46 012 —-0.68 0.43pct 120 0.56 61 0.10 3.0 0.0094 256 0042 125 0.0039
Al-0.5 pct Cu, Fig. 10 of Part I, center lower right, deformed at room temperature, assumed f = 1
088 010 -—-072 0.38 pct 108 0.56 58 0.083 2.3 0.011 244 0.035 097 0.0046
Al-0.5 pct Cu-1 pct Si, Fig. 11 of Part I, center, deformed at room temperature, assumed f = 3/4
041 0.035 -069 0.61 pct 173 041 89 0.20 53 0.023 374 0.087 22 0.0097
Al-0.5 pct Cu-1 pct Si, Fig. 1 of this article, average, deformed at room temperature, assumed f = 3/4
018 002 -069 0.61 pct 173 041 89 0.20 53 0.040 374 0.087 22 0.017

Stored energy densities (W,,) and temperature rises (AT, = Wy/cdy,, with ¢ = 880 Jkg °C the specific heat and d,, = 2700 kg/m? the
mechanical density) that would result if the stored energy were converted into heat, for five different compressed aluminum alloy samples
as listed. The symbols designate the following, respectively: L = average DB length, w = average DB width, ¢ = true compression strain,
vq = €lastic shear strain inferred from o = measured compression stress, assuming a Taylor factor of M = 2.5 (compare Figs. 1 through
3 of Part 1), I' = specific DB boundary energy (Eqgs. [19] and [20]), W, = plastic work input per unit volume (graphically derived from
Figs. 13 and 14 of Part I), Wy = 0.2G»3 = energy density due to elastic strain while under load (Eq. 14), Wioeq = inferred energy stored
in the dislocation cell structure (see eq. 13), and Wpg = 2I'/w the energy density comprised in the DB structure.

2398—VOLUME 30A, SEPTEMBER 1999 METALLURGICAL AND MATERIALS TRANSACTIONS A



at the moment of band formation at flow stress mg, the
shear stress will rise, in general, from g to 7pg (1 + 64),
at an associated mismatch energy density of

W, = 2AWIL) 73g [(1 + 822 — 1]/2G

[22]
= (20.0WIL) 735/G

whereas the energy density due to the band boundaries is
W ~ I'lw [23]
The energy minimum is found from d (W, + Wg)/dw = 0 at
W = {(TLG)/[Aa (25, + 6%) 7Bel}?

24
= {TLG/[22a0 78e]}"? 24

Since we are not now concerned with finding conservative
estimates as in the previous section, and in fact the deforma-
tion band boundary energy is reduced through the presence
of the ordinary cell walls® the best value for I' here is

T = T\m/2 = 0.035Gb [25]

One will therefore expect from Egs. [24] and [25] that the
parameter

£ = [Aa(26, + 62)] ~ 0.035 b(LMA)(Glmos)?  [26]

is nearly constant. This relationship was tested on the only
too restricted number of suitable micrographsfromthelitera-
ture and our own collection.’”™ An average of & = 0.8 was
found, which is compatible with ¢ = 1.2 derived from the
best theoretically expected values of 6, = 1 and A, = 0.4.

VI. DEFORMATION BANDS AND TEXTURE
MODELING: REPLACING THE TAYLOR
MINIMUM WORK CRITERION WITH THE
MINIMUM FREE ENERGY CRITERION

The derivation of the equilibrium value of w?/L in Egs.
[22] through [24] follows in outline the thoughts of Chin
and Wonsiewicz*” and the more recent and much more
detailed theoretical considerations of Lee et al.“® albeit
with one important modification: In the framework of the
LEDS hypothesis, it isthe energy density in the loaded state,
or in other words the free energy at the moment of DB
formation, that is minimized. By contrast, Chin and Wonsie-
wicz and Lee et al., in the continuing tradition of texture
modeling, minimized the plastic work input, i.e., Wj.

Numerically, the difference in these two approaches is as
follows: For the data of w?/L given by Lee et al. for their
DBsin rolled copper of two widely different grain sizes,[*®
Eq. [26] renders ¢ = 1.9 and 0.63, respectively,?3%% in
satisfactory agreement with the (admittedly rather uncertain)
best theoretical value of ¢ = 1.2 aready given at the end
of Section Ill. By contrast, the equation derived by Lee et
al. from Taylor’s minimum plastic work principle agrees
with those same data only if I' = 0.14Gb is assumed, an
obviously much too high value (compare Eq. [25]). The
numerical test isthusdecidedly in favor of the LEDS hypoth-
esis. More importantly, the plastic work minimization theo-
rem makes no physical sense: How could the structure of a
material at constant temperature possibly depend on how
much work was done on it when 90 pct and more thereof
was converted into heat? Moreover, the physical reason for
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the Taylor minimum work criterion is unaffected by consid-
ering free energy instead of plastic work input, since its
function is simply to aways let the most highly stressed
slip systems operate. In conclusion, then, in future texture
modeling, the Taylor minimum plastic work criterion must
be replaced by the minimum stored energy density criterion.

Vil. SUMMARY AND CONCLUSIONS

1. For historical reasons that pertain more to sociology
than science, protracted controversies in the area of
work-hardening theory have delayed the development
of technologically useful constitutive equations.

2. They may now be based on the LEDS theory as it
is fully consistent with the basic laws of physics and
comprehensively explainsall major facets of metal plas-
ticity with aminimum of assumptions or model making.

3. In fact, the LEDS theory is but a special case of the
more general L ES hypothesisaccording to which plastic
work done on materials generates states of order that
are near thermodynamical equilibrium and that this con-
gtitutes one of nature’s means to generate order.

4. The observations on DBs discussed in Part | are readily
incorporated into the LEDS theory.

5. These observations further permit a test of the LEDS
hypothesis as to the degree to which actual dislocation
structures approach thermodynamical equilibrium.

6. Whereas the total work input through the deforming
tractions is commonly equivalent to tens of degrees
Centigrade heating of the material and more, the ener-
gies stored in the dislocation structures and DBs would
heat the material through only about 1 °C and 0.01
°C, respectively.

7. That means that the dislocation structure is finely tuned
S0 asto approach free energy minimization, i.e., thermo-
dynamical equilibrium, to a remarkably close degree.

8. This result virtually proves the LEDS theory but isin
stark conflict with the assumption of SODS modeling
that plastic deformation occurs far from equilibrium.

9. With the demonstrated success of the LEDS theory, the
way is now open to begin the development of constitu-
tive equations based thereon.

10. Accordingly, in future texture modeling, the Taylor cri-
terion of minimum work input should be replaced by
the criterion of minimum free energy of the deformed
material while under stress.
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b magnitude of the Burgers vector

b Burgers vector

c specific heat

On mechanical density

dy shear strain increment caused by dg, newly gen-

erated glide dislocations
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increment of newly generated glide dislocations

average dislocation cell sizein stages |l and IV

“regular” deformation band, i.e., adlab-like vol-
ume element with a selection of active dip
systems differing from that in neighbor bands

Young's modulus, the ratio of tensile stress to
tensile strain

correction factor taking into account the pres-
ence of cell walls with ¢ values of <1/e

the glide path parameter, being the mean free
dislocation path length in units of the mean
dislocation link length or spacing, |

shear modulus

numerical parameter in the order of ten, which
links the cell size to the flow stress (Eqg. [8])

average dislocation link length or distance
between dislocations in LEDSs

average deformation band length

dislocation structure within which near-neighbor
disocations mutually screen their shear
stresses to the level of 7

factor by which the didocation density in cell
walls exceeds the geometrically necessary

probability that a theory is correct according to
the theory of theories

dislocation structure expected from dislocation
self-organization far from equilibrium in
accordance with Prigogine’s thermodynamics
of energy-flow-through systems

absolute melting point temperature

average didocation line energy in a LEDS
(Ea. [2])

elastic strain energy associated with strain
energy gradients in a mosaic block structure

energy density associated with new cell walls
being generated on account of Uy

average deformation bandwidth

energy density on account of strain mismatch at
DB ends

energy density on account of DB boundaries

energy density on account of the presence of
regular deformation bands = W, + W

elastic strain energy density on account of
applied flow stress, 7

work input density on account of plastic strain
application of

energy density stored in the from of LEDSs

the flow stress parameter, linking the flow stress
to the dislocation density (Eg. [1])

the didocation retention parameter, being the
fraction of newly generated glide dislocations
that is trapped in the LEDS structure

elastic shear stain at flow stress 7

plastic strain between the undeformed state and
application of flow stress 7

specific deformation band boundary energy

maximum value of T', attained for ¢ = 1/e =
21.08 deg (Eg. [20])

fractional increase of thelocal stress at deforma-
tion band ends
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23.

24.

25.

26.

27.

29.

temperaturerise if the energy stored in deforma-
tion bands, Wpg, were converted into heat

temperature rise if the stored energy, Wsored,
were converted into heat

width of zone of enhanced stress, in units of w,
on account of strain mismatch at DB ends

work-hardening coefficient

Poisson’s ratio.

| atticerotation angle acrossadisl ocation rotation
boundary, e.g., a cell wall or DB boundary

dislocation density

flow stress, critical resolved shear stress

flow stress at the point of deformation band
formation

friction stress, resolved shear stress required to
move a straight, isolated dislocation

measurable parameter linking variousvaluesrel-
evant to DBs, theoretically expected to be not
far from unity (Eq. [26]).
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